Nanomaterials Behavior under Irradiation Impact

  • Rostislav A. AndrievskiEmail author
  • Arsen V. Khatchoyan
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 230)


In this chapter, the main attention is given to the possible effects of irradiation on the structure and properties of NMs. The data on various nanostructures behavior under irradiation by high energy ions/neutrons as well as the possibilities and potentialities of some microscopic approaches and MD modeling results are considered and generalized. The examples of possible practical use of NMs are presented and several poorly investigated problems are discussed.


Interstitial Atom Radiation Defect Atom Probe Tomography International Thermonuclear Experimental Reactor Radiation Hardening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Golubov SI, Barashev AV, Stoller RE (2011) Radiation damage theory. In: Konigs R (ed) Encyclopedia of comprehensive nuclear materials. Elsevier, Amsterdam, Chap. 29Google Scholar
  2. 2.
    Rose M, Balough AG, Hahn H (1997) Instability of irradiation induced defects in nanostructured materials. Nucl Instr Meth Phys Res B 127–128:119–122CrossRefGoogle Scholar
  3. 3.
    Misra A, Demkowicz MJ, Zhang X et al (2007) The radiation damage tolerance of ultrahigh strength nanolayered composites. JOM 52:62–65CrossRefGoogle Scholar
  4. 4.
    Wurster S, Pippan R (2009) Nanostructured metals under irradiation. Scr Mater 60:1083–1087CrossRefGoogle Scholar
  5. 5.
    Andrievskii RA (2010) Effect of irradiation on properties of nanomaterials. Phys Met Metallogr 110:229–240CrossRefGoogle Scholar
  6. 6.
    Demkowicz MJ, Bellon P, Wirth BD (2010) Atomic-scale design of radiation-tolerant nanocomposites. MRS Bull 35:992–998CrossRefGoogle Scholar
  7. 7.
    Andrievski RA (2011) Behavior of radiation defects in nanomaterials. Rev Adv Mater Sci 29:54–67Google Scholar
  8. 8.
    Perry AJ (1998) Microstructural changes in ion implanted titanium nitride. Mater Sci Eng, A 253:310–318CrossRefGoogle Scholar
  9. 9.
    Rose M, Gorzawski G, Miche G et al (1995) Phase stability of nanostructured materials under heavy ion irradiation. Nanostruct Mater 6:731–734CrossRefGoogle Scholar
  10. 10.
    Nita R, Schaeublin R, Victoria M (2004) Impact of radiation on the microstructure of nanocrystalline materials. J Nucl Mater 329–333:953–957CrossRefGoogle Scholar
  11. 11.
    Nita R, Schaeublin R, Victoria M et al (2005) Effect of radiation on the microstructure and mechanical properties of nanostructured materials. Phil Mag 85:723–735CrossRefGoogle Scholar
  12. 12.
    Shen TD, Feng Sh, Tang M et al (2007) Enhanced radiation tolerance in nanocrystalline Mg2GaO4. Appl Phys Lett 90:263115 (1–3)Google Scholar
  13. 13.
    Kilmametov AR, Gunderov DV, Valiev RZ et al (2008) Enhanced ion irradiation resistance of bulk nananocrystalline TiNi alloy. Scr Mater 59:1027–1030CrossRefGoogle Scholar
  14. 14.
    Kurushita H, Kobayashi S, Nakai K et al (2008) Development of ultra-fine grained W–(0.2–0.8)wt% TiC and its superior resistance to neutron and 3 MeV He-ion irradiation. J Nucl Mater 377:34–40CrossRefGoogle Scholar
  15. 15.
    Ettienne A, Radiguet B, Cunningham NJ et al (2011) Comparison of radiation-induced segregation in ultrafine-grained and conventional 316 austenitic stainless steels. Ultramicroscopy 111:659–663CrossRefGoogle Scholar
  16. 16.
    Yu KY, Liu Y, Sun C et al (2012) Radiation damage in helium ion irradiated nanocrystalline Fe. J Nucl Mater 425:140–146CrossRefGoogle Scholar
  17. 17.
    Parish CM, White RM, LeBeau JM et al (2014) Response of nanostructured ferritic alloys to high-dose heavy ion irradiation. J Nucl Mater 445:251–260CrossRefGoogle Scholar
  18. 18.
    Fu EG, Misra A, Wang H et al (2010) Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers. J Nucl Mater 407:178–188CrossRefGoogle Scholar
  19. 19.
    Misra A, Thilly L (2010) Structural metals at extremes. MRS Bull 35:965–972Google Scholar
  20. 20.
    Gao Y, Yang T, Xue J et al (2011) Radiation tolerance of Cu/W multilayered nanocomposites. J Nucl Mater 413:11–15CrossRefGoogle Scholar
  21. 21.
    Wang H, Gao Y, Fu E at al (2014) Irradiation effects on multilayered W/ZrO2 film under 4 MeV Au ions. J Nucl Mater 455:86–90Google Scholar
  22. 22.
    Milosavljević M, Milinović V, Peruško D et al (2011) Stability of nano-scaled Ta/Ti multilayers upon argon irradiation. Nucl Instr Meth Phys Res B 269:2090–2097CrossRefGoogle Scholar
  23. 23.
    Hong M, Ren F, Zhang H et al (2012) Enhanced radiation tolerance in nitride multilayered nanofilms with small period-thicknesses. Appl Phys Lett 101:153117 (1–5)Google Scholar
  24. 24.
    Yu KY, Liu Y, Fu EG et al (2013) Comparisons of radiation damage in He ion and proton irradiated immiscible Ag/Ni nanolayers. J Nucl Mater 440:310–318CrossRefGoogle Scholar
  25. 25.
    Andrievski RA (2009) Synthesis, structure and properties of nanosized silicon carbide. Rev Adv Mater Sci 22:1–20Google Scholar
  26. 26.
    Wu R, Zhou K, Yue ChY et al (2015) Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Progr Mater Sci 72:1–60CrossRefGoogle Scholar
  27. 27.
    Leconte Y, Monnet I, Levalois M et al (2007) Comparison study of structural damage under irradiation in SiC nanostructured and conventional ceramics. Mater Res Soc Symp Proc 981:JJ07 (1–6). (MRS, Warrendale)Google Scholar
  28. 28.
    Jiang W, Wang H, Kim I et al (2009) Response of nanocrysralline 3C silicon carbide to heavy-ion irradiation. Phys Rev B 80:161301 (R) (1–4)Google Scholar
  29. 29.
    Gosset D, Audren A, Leconte Y et al (2012) Structural irradiation damage and recovery in nanometric silicon carbide. Progr Nucl Energy 57:52–56CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Ishimaru M, Varga T et al (2012) Nanoscale engineering of radiation tolerant silicon carbide. Phys Chem Chem Phys 14:13429–13436CrossRefGoogle Scholar
  31. 31.
    Ishimaru M, Zhang Y, Shannon S et al (2013) Origin of radiation tolerance in 3C-SiC with nanolayered planar defects. Appl Phys Lett 103:033104 (1–4)Google Scholar
  32. 32.
    Meldrum A, Boatner LA, Ewing RC (2002) Nanocrystalline zirconia can be amorphized by ion irradiation. Phys Rev Lett 88:025503 (1–3)Google Scholar
  33. 33.
    Sickafus KE, Matzke H, Hartman T et al (1999) Radiation damage effects in zirconia. J Nucl Mater 274:66–77CrossRefGoogle Scholar
  34. 34.
    Johannessen B, Kluth P, Liewellyn DJ et al (2007) Amorphization of embedded Cu nanocrystals by ion irradiation. Appl Phys Lett 90:073119 (1–3)Google Scholar
  35. 35.
    Johannessen B, Kluth P, Liewellyn DJ et al (2007) Ion-irradiation-induced amorphization of Cu nanoparticles embwddwd in SiO2. Phys Rev B 76:184203 (1–11)Google Scholar
  36. 36.
    Kluth P, Johannessen B, Foran GJ et al (2006) Disorder and cluster formation during ion irradiation of Au nanoparticles in SiO2. Phys Rev B 74:014202 (1–8)Google Scholar
  37. 37.
    Ridgway MC, Azevedo GM, Elliman RG et al (2005) Ion-irradiation-induced preferential amorphization of Ge nanocrystals in silica. Phys Rev B 71:094107 (1–6)Google Scholar
  38. 38.
    Djurabekova F, Backman M, Pakarinen OH et al (2009) Amorphization of Ge nanocrystals embedded in amorphous silica under ion irradiation. Instr Meth Phys Res B 267:1235–1238CrossRefGoogle Scholar
  39. 39.
    Sprouster DJ, Giulian R., Araujo LL et al (2010) Ion irradiation induced amorphization of cobalt nanoparticles. Phys Rev B 81:1554 (1–8)Google Scholar
  40. 40.
    Krasheninnikov AV, Nordlund K (2010) Ion and electron irradiation-induced effects in nanostructured materials. J Appl Phys 107:071301 (1–70)Google Scholar
  41. 41.
    Chukalkin YuG (2013) Amorphization of oxides by irradiation of fast neutrons. Phys Solid State 55:1601–1604CrossRefGoogle Scholar
  42. 42.
    Kaomi D, Motta AT, Birtcher RC (2008) A thermal spike model of grain growth under irradiation. J Appl Phys 104:073525 (1–13)Google Scholar
  43. 43.
    Radiguet B, Etienne P, Pareige P et al (2008) Irradiation behavior of nanostructured 316austenitic stainless steel. J Mater Sci 43:7338–7343CrossRefGoogle Scholar
  44. 44.
    Lian J, Zhang J, Namavar F et al (2009) Ion beam-induced amorphous-to-tetragonal phase transformation and grain growth of nanocrystalline zirconia. Nanotechnology 20:245303 (1–7)Google Scholar
  45. 45.
    Marquis EA, Hu R, Rousseau T (2011) A systematic approach for the study of radiation- induced segregation/depletion at grain boundaries in steels. J Nucl Mater 413:1–4CrossRefGoogle Scholar
  46. 46.
    Certain A, Kuchibhatla S, Shutthanandan V et al (2013) Radiation stability of nanoclusters in nanostructured oxide dispersion strengthened (ODS) steels. J Nucl Mater 434:311–321CrossRefGoogle Scholar
  47. 47.
    Vo NQ, Chee SW, Schwen D et al (2010) Microstructural stability of nanostructured Cu alloys during high-temperature irradiation. Scr Mater 63:929–932CrossRefGoogle Scholar
  48. 48.
    Tai K, Averback RS, Bellon Pinko VI et al (2009) Radiation-induced reduction in the void swelling. J Nucl Mater 385:228–230CrossRefGoogle Scholar
  49. 49.
    Yang T, Huang X, Wang C et al (2012) Enhanced structural stability of nanoporous zirconia under irradiation of He. J Nucl Mater 427:225–232CrossRefGoogle Scholar
  50. 50.
    Bringa EM, Monk JD, Caro A et al (2012) Are nanoporous materials radiation resistant? Nano Lett 12:3351–3355CrossRefGoogle Scholar
  51. 51.
    Yu KY, Bufford D, Chen Y et al (2013) Basic criteria for formation of growth twins in high stacking fault energy metals. Appl Phys Lett 103:181903 (1–5)Google Scholar
  52. 52.
    Yu KY, Bufford D, Sun C et al (2013) Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals. Nat Commun 4:1377–1384CrossRefGoogle Scholar
  53. 53.
    Yu KY, Bufford D, Khatkhatay F et al (2013) In situ studies of irradiation-induced twin boundary migration in nanotwinned Ag. Scr Mater 69:385–388CrossRefGoogle Scholar
  54. 54.
    Han W, Fu EG, Demkowicz MJ et al (2013) Irradiation damage of single crystal, coarse-grained, and nanograined copper under helium bombardment at 450 °C. J Mater Res 28:2763–2769CrossRefGoogle Scholar
  55. 55.
    Wang H, Gao Y, Fu E et al (2013) Effect of high fluence Au ion irradiation on nanocrystalline tungsten film. J Nucl Mater 442:189–194CrossRefGoogle Scholar
  56. 56.
    Yamashita S, Akasaka N, Ohnuki S (2004) Nano-oxide particle stability of 9–12Cr grain morphology modified ODS steels under neutron irradiation. J Nucl Mater 329–333:377–381CrossRefGoogle Scholar
  57. 57.
    Matsuoka H, Yamasaki T, Zheng YJ et al (2007) Microstructure and mechanical properties of neutron-irradiated ultra-fine-grained SUS316L stainless steels and electrodeposited nanocrystalline Ni and Ni–W alloys. Mater Sci Eng, A 449–451:790–793CrossRefGoogle Scholar
  58. 58.
    Pareige P, Etienne A, Radiguet B (2009) Experimental atamic scale investigation of irradiation effects in CW 316SS and UFG-CW 316SS. J Nucl Mater 389:259–264CrossRefGoogle Scholar
  59. 59.
    McClintock DA, Hoelzer DT, Sokolov MA et al (2009) Mechanical properties of neutron irradiated nanostructured ferritic alloy 14YWT. J Nucl Mater 386–388:307–311CrossRefGoogle Scholar
  60. 60.
    McClintock DA, Sokolov MA, Hoelzer DT et al (2009) Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. J Nucl Mater 392:353–359CrossRefGoogle Scholar
  61. 61.
    Nanstad RK, McClintock DA, Hoelzer DT et al (2009) High temperature irradiation effects in selected Generation IV structural alloys. J Nucl Mater 392:331–340CrossRefGoogle Scholar
  62. 62.
    Miller MK, Hoelzer DT (2011) Effect of neutron irradiation on nanoclusters in MA957 ferritic alloys. J Nucl Mater 418:307–310CrossRefGoogle Scholar
  63. 63.
    Katoh Y, Nozawa T, Snead LL et al (2011) Stability of SiC and its composites at high neutron fluence. J Nucl Mater 417:400–405CrossRefGoogle Scholar
  64. 64.
    Shamardin VK, Goncharenko YD, Bulanova TM et al (2012) Effect of neutron irradiation on microstructure and properties of austenitic AISI 321 steel, subjecting to equal-channel angular pressing. Rev Adv Mater Sci 31:167–173Google Scholar
  65. 65.
    Alsabbagh A, Valiev RZ, Murty KL (2013) Influence of grain size on radiation effects in a low carbon steel. J Nucl Mater 443:302–310CrossRefGoogle Scholar
  66. 66.
    Koyanagi T, Shimoda K, Kondo S et al (2014) Irradiation creep of nanopowder sintered silicon carbide at low neutron fluences. J Nucl Mater 455:73–80CrossRefGoogle Scholar
  67. 67.
    Ovid’ko IA, Sheinerman AG (2005) Irradiation-induced amorphization processes in nanocrystalline solids. Appl Phys A 81:1083–1088Google Scholar
  68. 68.
    Shen TD (2008) Radiation tolerance in a nanostructure: is a smaller better? Nucl Instr Meth Phys Res B 266:921–925CrossRefGoogle Scholar
  69. 69.
    Oksengendler BI, Turaeva NN, Maximov SE et al (2010) Peculiarities of radiation-induced defect formation in nanocrystals imbedded in a solid matrix. J Exp Theor Phys 111:415–420CrossRefGoogle Scholar
  70. 70.
    Samaras M., Derlet PM, Van Swygenhoven H et al (2002) Computer simulation of displacement cascades in nano crystalline Ni. Phys Rev Lett 88:125505 (1–4)Google Scholar
  71. 71.
    Voegeli W, Albe K, Hahn H (2003) Simulation of grain growth in nanocrystalline nickel induced by ion irradiation. Nucl Instr Meth Phys Res B 202:230–235CrossRefGoogle Scholar
  72. 72.
    Samaras M, Derlet PM, Van Swygenhoven H et al (2003) SIA activity during irradiation of nanocrystalline Ni. J Nucl Mater 323:213–219CrossRefGoogle Scholar
  73. 73.
    Mayr SG, Averback RS (2003) Evolution of morphology in nanocrystalline thin films during ion irradiation. Phys Rev B 68:075419 (1–9)Google Scholar
  74. 74.
    Samaras M, Derlet PM, Van Swygenhoven H et al (2006) Atomic scale modeling of the primary damage state of irradiated FCC and BCC nanocrystalline metals. J Nucl Mater 351:47–55CrossRefGoogle Scholar
  75. 75.
    Millet PC, Aidhy DS, Desai T et al (2009) Grain-boundary source/sink behavior for point defect: an atomistic simulation study. Int J Mater Res 100:550–555CrossRefGoogle Scholar
  76. 76.
    Beyerlein IJ, Caro A, Demkowicz et al (2013) Radiation damage tolerant nanomaterials. Mater Today 16:443–449Google Scholar
  77. 77.
    Morishita K, Watanabe Y, Kohyama A et al (2009) Nucleation and growth of vacancy-clusters in β-SiC during irradiation. J Nucl Mater 386–388:30–32CrossRefGoogle Scholar
  78. 78.
    Swaminathan N, Kamenski PJ, Morgan D et al (2010) Effects of grain size and grain boundaries on defect production in nanocrystalline 3C-SiC. Acta Mater 58:2843–2853CrossRefGoogle Scholar
  79. 79.
    Jiang H, Jiang C, Morgan D et al (2014) Accelerated atomistic simulation study on the stability and mobility of carbon tri-interstitial cluster in cubic SiC. Comp Mater Sci 89:182–188CrossRefGoogle Scholar
  80. 80.
    Psakhie SG, Zolnikov KP, Kryzhevich DS et al (2009) Evolution of atomic collision cascade in vanadium crystal with internal structure. Crystal Rep 54:1002–1011CrossRefGoogle Scholar
  81. 81.
    Bai X-M, Voter AF, Hoagland RG et al (2010) Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327:1631–1634Google Scholar
  82. 82.
    Yang Y, Huang H, Zinkle SJ (2010) Anomaly in dependence of radiation-induced vacancy accumulation on grain size. J Nucl Mater 405:261–265CrossRefGoogle Scholar
  83. 83.
    Bai X-M, Uberuaga BP (2012) Multi-timescale investigation of radiation damage near TiO2 rutile grain boundaries. Phil Mag 92:1469–1498CrossRefGoogle Scholar
  84. 84.
    Chimi Y, Iwase A, Ishikawa N et al (2001) Accumulation and recovery of defects in ion-irradiated nanocrystalline gold. J Nucl Mater 297:355–357Google Scholar
  85. 85.
    Zinkle SJ, Was GS (2013) Materials challenges in nuclear energy. Acta Mater 61:735–758CrossRefGoogle Scholar
  86. 86.
    Ukai S, Mizuta S, Yoshitake T et al (2000) Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels. J Nucl Mater 283–287:702–706CrossRefGoogle Scholar
  87. 87.
    Dubuisson P, Carlan Y, Garat V et al (2012) ODS ferritic/martensitic alloys for sodium fast reactor fuel pin cladding. J Nucl Mater 428:6–12CrossRefGoogle Scholar
  88. 88.
    Odette GR, Alinger MJ, Wirth BD (2008) Recent developments in irradiation-resistant steels. Annu Rev Mater Res 38:471–503CrossRefGoogle Scholar
  89. 89.
    Zinkle SJ, Snead LL (2014) Designing radiation resistance in materials for fusion energy. Annu Rev Mater Res 44:241–287CrossRefGoogle Scholar
  90. 90.
    Voronin AV, Sud’enkov YV, Semenov BN et al (2014) Degradation of tungsten under the action of a plasma jet. Tech Phys 59:981–988CrossRefGoogle Scholar
  91. 91.
    Rieth M, Dudarev SL, Gonzales de Vicente SM et al (2013) A brief summary of the progress on the EFDA tungsten materials program. J Nucl Mater 442:173–180CrossRefGoogle Scholar
  92. 92.
    Wurster S, Baluc N, Battabyal M et al (2013) Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. J Nucl Mater 442:181–189CrossRefGoogle Scholar
  93. 93.
    Efe M, El-Atwani O, Guo Y et al (2014) Microstructure refinement of tungsten by surface deformation for irradiation damage resistance. Scr Mater 70:31–34CrossRefGoogle Scholar
  94. 94.
    Fukuda M, Hasegawa A, Tanno TS et al (2013) Property change of advanced tungsten alloys due to neutron irradiation. J Nucl Mater 442:273–276CrossRefGoogle Scholar
  95. 95.
    Sawan ME, Katoh Y, Snead LL (2013) Transmutation of silicon carbide in fusion nuclear environment. J Nucl Mater 442:370–375CrossRefGoogle Scholar
  96. 96.
    Kim W-J, Park JN, Cho MS et al (2009) Effect of coating temperature on properties of the SiC layer in TRISO-coated particles. J Nucl Mater 392:213–218CrossRefGoogle Scholar
  97. 97.
    Buyuk B, Tugrul B, Akarsu AC et al (2011) Investigation on the effects of TiB2 particle size on radiation shielding properties of TiB2 reinforced BN–SiC composites. In: Pogrebnjak AD (ed), Nanomaterials: Applications and Properties (NAP-2011, Alushta), Ukrainian Sumy University, Sumy, vol 2, part II, pp 421–428Google Scholar
  98. 98.
    Schrempp-Koops L (2013) Size efficiency of neutron shielding in nanocomposites—a full-range analysis. Int J Nanosci 12:1350015 (1–8)Google Scholar
  99. 99.
    Kim J, Seo D, Lee BC et al (2014) Nano-W dispersed gamma radiation shielding materials. Adv Eng Mater 16:1083–1089CrossRefGoogle Scholar
  100. 100.
    Salsah N (2011) Nanocrystalline materials for the dosimetry of heavy charged particles: a review. Rad Phys Chem 80:1–10CrossRefGoogle Scholar
  101. 101.
    Kortov VS, Nikiforov SV, Moiseikin EVAG et al (2013) Luminescent and dosimetric properties of nanostructured ceramics based on aluminium oxide. Phys Sol State 55:2088–2093CrossRefGoogle Scholar
  102. 102.
    Aidhy DS, Zhang Y, Weber WJ (2014) A fast grain-growth mechanism revealed in nanocrystalline ceramic oxides. Scr Mater 83:9–12CrossRefGoogle Scholar
  103. 103.
    Mao Sh, Shu SH, Zhou J et al (2015) Quantitative comparison of sink efficiency of Cu–Nb, Cu–V and Cu–Ni interfaces for point defects. Acta Mater 82:328–335CrossRefGoogle Scholar
  104. 104.
    Sun C, Zheng S, Wei CC et al (2015) Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments. Sci Rep 5:7801 (1–6)Google Scholar
  105. 105.
    Dey S, Drazin JW, Wang Y et al (2015) Radiation tolerance of nanocrystalline ceramics: insight from Yttria stabilized Zirconia. Sci Rep 5:7746 (1–9)Google Scholar
  106. 106.
    Tallman DJ, Hoffman EN, Caspi EN et al (2015) Effect of neutron irradiation on select MAX phases. Acta Mater 85:132–141CrossRefGoogle Scholar
  107. 107.
    Huang Q, Liu R, Lei G et al (2015) Irradiation resistance of MAX phases Ti3SiC2 and Ti3AlC2: characterization and comparison. J Nucl Mater 465:640–647CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rostislav A. Andrievski
    • 1
    Email author
  • Arsen V. Khatchoyan
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Institute of Structural MacrokineticsRussian Academy of SciencesChernogolovka, Moscow AreaRussia

Personalised recommendations