Grain Growth and Nanomaterials Behavior at High Temperatures

  • Rostislav A. AndrievskiEmail author
  • Arsen V. Khatchoyan
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 230)


Current developments in kinetic and thermodynamic stabilization of grains in NMs-based metals, alloys and HMPC at high temperatures are generalized and discussed in detail. Special attention is paid to a possible quantitative estimation with using the regular solution approximation by considering both inner regions of nanograins and their interfaces. Recent data on abnormal grain growth are also considered. Practical application examples concerning bulk and film/coating objects are given and some unsolved problems are presented.


High Thermal Stability Severe Plastic Deformation Equal Channel Angular Pressing Spinodal Decomposition Density Function Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Koch CC, Ovid’ko IA, Seal S et al (2007) Structural nanocrystalline materials: fundamentals and applications. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61:782–817CrossRefGoogle Scholar
  3. 3.
    Valiev RZ, Zhilyaev AP, Langdon TG (2014) Bulk nanostructured materials: fundamentals and applications. Wiley, WeinheimGoogle Scholar
  4. 4.
    Upmanyu M, Srolovitz DJ, Lobkovsky AE et al (2006) Simultaneous grain boundary migration and grain rotation. Acta Mater 54:1707–1715CrossRefGoogle Scholar
  5. 5.
    Bernstein N (2008) The influence of geometry on grain boundary motion and rotation. Acta Mater 56:1106–1113CrossRefGoogle Scholar
  6. 6.
    Chaim R (2012) Groan coalescence by grain rotation in nanoceramics. Scr Mater 66:269–271CrossRefGoogle Scholar
  7. 7.
    Zizak I, Darowski N, Klaumünzer S et al (2009) Grain rotation in nanocrystalline layers under influence of swift heavy ions. Nucl Instr Meth Phys Res B 267:944–948CrossRefGoogle Scholar
  8. 8.
    Novikov VY (2010) On grain growth in the presence of mobile particles. Acta Mater 58:3326–3331CrossRefGoogle Scholar
  9. 9.
    Novikov VY (2012) Microstructure evolution during grain growth in materials with disperse particles. Mater Lett 68:413–415CrossRefGoogle Scholar
  10. 10.
    Novikov VY (2008) Impact of grain boundary junctions on grain growth in polycrystals with different grain sizes. Mater Lett 62:2067–2069CrossRefGoogle Scholar
  11. 11.
    Gottstein G, Shvindlerman LS (2005) A novel concept to determine the mobility of grain boundary quadruple junctions. Scr Mater 52:863–866CrossRefGoogle Scholar
  12. 12.
    Zhao B, Gottstein G, Shvindlerman LS (2011) Triple junction effects in solids. Acta Mater 59:3510–3518CrossRefGoogle Scholar
  13. 13.
    Klinger L, Rabkin E, Shvindlerman LS et al (2008) Grain growth in porous two-dimensional nanocrystalline materials. J Mater Sci 43:5068–5075CrossRefGoogle Scholar
  14. 14.
    Trelewicz JR, Schuh CA (2009) Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys Rev B 79:094112 (1–13)Google Scholar
  15. 15.
    Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954CrossRefGoogle Scholar
  16. 16.
    Murdoch HA, Schuh CA (2013) Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater 61:2121–2132CrossRefGoogle Scholar
  17. 17.
    Saber M, Kotan H, Koch CC et al (2013) Thermodynamic stabilization of nanocrystalline binary alloys. J Appl Phys 113:063515 (1–10)Google Scholar
  18. 18.
    Xu WW, Song XY, Li ED et al (2009) Thermodynamic study on phase stability in nanocrystalline Sm–Co alloy system. J Appl Phys 105:104310 (1–6)Google Scholar
  19. 19.
    Song X, Lu N, Huang Ch et al (2010) Thermodynamic and experimental study on phase stability in nanocrystalline alloys. Acta Mater 58:396–407CrossRefGoogle Scholar
  20. 20.
    Xu W, Seng X, Zhang Z (2010) Thermodynamic study on metastable phase: from polycrystalline to nanocrystalline system. Appl Phys Lett 97:181911 (1–3)Google Scholar
  21. 21.
    Xu W, Song X, Lu N et al (2009) Nanoscale thermodynamic study on phase transformation in the nanocrystalline Sm2Co17 alloy. Nanoscale 1:238–244CrossRefGoogle Scholar
  22. 22.
    Xu W, Song X, Zhang ZX (2012) Multiphase equilibrium, phase stability and phase transformation in nanocrystalline alloy systems. Nano Brief Rep Rev 7:125012 (1–10)Google Scholar
  23. 23.
    Chookajorn T, Schuh CA (2014) Thermodynamics of stable nanocrystalline alloys. Phys Rev B 89:064102 (1–10)Google Scholar
  24. 24.
    Zhang RF, Veprek S (2008) Phase stability of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1-xSixNy solid solution studied by ab initio calculation and thermodynamic modeling. Thin Solid Films 516:2264–2275CrossRefGoogle Scholar
  25. 25.
    Sheng SH, Zhang RF, Veprek S (2011) Phase stabilities and decomposition mechanism in the Zr–Si–N system studied by combined ab initio DFT and thermodynamic calculation. Acta Mater 59:297–307CrossRefGoogle Scholar
  26. 26.
    Sheng SH, Zhang RF, Veprek S (2011) Study of spinodal decomposition and formation of nc-Al2O3/ZrO2 nanocomposites by combined ab initio density functional theory and thermodynamic modeling. Acta Mater 59:3498–3509CrossRefGoogle Scholar
  27. 27.
    Ivashchenko VI, Veprek S, Turchi PEA et al (2012) Comparative first-principles study of TiN/SiNx/TiN interfaces, Phys Rev B 85:195403 (1–14)Google Scholar
  28. 28.
    Ivashchenko VI, Veprek S, Turchi PEA et al (2012) First-principles study of TiN/SiC/TiN interfaces in superhard nanocomposites. Phys Rev B 86:014110 (1–8)Google Scholar
  29. 29.
    Ivashchenko VI, Veprek S (2013) First-principles molecular dynamics study of the thermal stability of the BN, AlN, SiC and SiN interfacial layers in TiN-based heterostructures: comparison with experiments. Thin Sol Films 545:391–400CrossRefGoogle Scholar
  30. 30.
    Rusanov AI (2002) The surprising world of nanostructures. Russ J Gen Chem 72:495–512CrossRefGoogle Scholar
  31. 31.
    Glezer AM (2002) Amorphfnye i nanocrystallicheskie struktury: skhodstvo, razlichiya ivzaimnye perekhody (Amorphous and nanocrystalline structures: similarity, differences, and mutual transitions). Ros Khim Zhurn 46(5):57–64 (in Russian)Google Scholar
  32. 32.
    Ovid’ko IA (2009) Theories of grain growth and methods of its suppression in nano- and polycrystalline materials. Mater Phys Mech 8:174–199Google Scholar
  33. 33.
    Castro RHR (2013) On the thermodynamic stability of nanocrystalline ceramics. Mater Lett 96:45–56CrossRefGoogle Scholar
  34. 34.
    Andrievski RA (2014) Review of thermal stability of nanomaterials. J Mater Sci 49:1449–1460CrossRefGoogle Scholar
  35. 35.
    Tschopp MA, Murdoch HA, Kecskes LJ et al (2014) “Bulk” nanocrystalline metals: review on the current state of the art and future opportunities for copper and copper alloys. JOM 66:1000–1019CrossRefGoogle Scholar
  36. 36.
    Atwater MA, Scattergood RO, Koch CC (2013) The stabilization of nanocrystalline copper by zirconium. Mater Sci Eng A 559:250–256CrossRefGoogle Scholar
  37. 37.
    Chookajorn T, Schuh CA (2014) Nanoscale segregation behavior and high-temperature stability of nanocrystalline W–20 at%Ti. Acta Mater 73:128–138CrossRefGoogle Scholar
  38. 38.
    Koch CC, Scattergood RO, Saber M et al (2013) High temperature stabilization of nanocrystalline grain size: thermodynamic versus kinetic strategies. J Mater Res 28:1785–1791CrossRefGoogle Scholar
  39. 39.
    Atwater MA, Roy D, Darling KA et al (2012) The thermal stability of nanocrystalline copper cryogenically milled with tungsten. Mater Sci Eng A 558:226–233CrossRefGoogle Scholar
  40. 40.
    Darling KA, Roberts AJ, Mishin Y et al (2013) Grain size stabilization of nanocrystalline copper at high temperature by alloying with tantalum. J All Comp 573:142–150CrossRefGoogle Scholar
  41. 41.
    Frolov T, Darling KA, Kecskes LJ et al (2012) Stabilization and strengthening of nanocrystalline copper by alloying with tantalum. Acta Mater 60:2158–2168CrossRefGoogle Scholar
  42. 42.
    Özerinç S, Tai K, Vo NQ et al (2012) Grain boundary doping strengthens nanocrystalline copper alloys. Scr Mater 67:720–723CrossRefGoogle Scholar
  43. 43.
    Koch CC, Scattergood RO, VanLeeuwen BK et al (2012) Thermodynamic stabilization of grain size in nanocrystalline metals. Mater Sci Forum 715–716:323–328CrossRefGoogle Scholar
  44. 44.
    Darling KA, Kecskes LJ, Atwater M et al (2013) Thermal stability of nanocrystalline nickel with yttrium additions. J Mater Res 28:1813–1819CrossRefGoogle Scholar
  45. 45.
    Anderoglu O, Misra A, Wang H et al (2008) Thermal stability of sputtered Cu films with nanoscale growth twins. J Appl Phys 103:094322 (1–6)Google Scholar
  46. 46.
    Lu L, Shen Y, Chen X et al (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426CrossRefGoogle Scholar
  47. 47.
    Liu X, Zhang HW, Lu K (2013) Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342:337–340CrossRefGoogle Scholar
  48. 48.
    Zheng S, Beyerlein IJ, Carpenter JS et al (2013) High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nature Commun 4:1696–1703CrossRefGoogle Scholar
  49. 49.
    Ames M, Markmann J, Karos R et al (2008) Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater 56:4255–4266CrossRefGoogle Scholar
  50. 50.
    Gottstein G, Shvindlerman LS, Zhao B (2010) Thermodynamics and kinetics of grain boundary triple junctions in metals: recent developments. Scr Mater 62:914–917CrossRefGoogle Scholar
  51. 51.
    Konkova T, Mironov S, Korznikov A et al (2010) Microstructure instability in cryogenically deformed copper. Scr Mater 63:921–924CrossRefGoogle Scholar
  52. 52.
    Cheng L, Hibbard GD (2008) Abnormal grain growth via migration of planar growth interfaces. Mater Sci Eng A 492:128–133CrossRefGoogle Scholar
  53. 53.
    Hattar K, Follstaedt DM, Knapp JA et al (2008) Defect structures created during abnormal grain growth in pulsed-laser deposited nickel. Acta Mater 56:794–801CrossRefGoogle Scholar
  54. 54.
    Kacher J, Robertson IM, Nowell M et al (2011) Study of rapid grain boundary migration in a nanocrystalline Ni thin film. Mater Sci Eng A 528:1628–1635CrossRefGoogle Scholar
  55. 55.
    Paul H, Krill CE III (2011) Abnormally linear grain growth in nanocrystalline Fe. Scr Mater 65:5–8CrossRefGoogle Scholar
  56. 56.
    Kotan H, Darling KA, Saber M et al (2013) An in situ experimental study of grain growth in a nanocrystalline Fe91Ni6Zr1 alloy. J Mater Sci 48:2251–2257CrossRefGoogle Scholar
  57. 57.
    Mannesson K, Jeppsson J, Borgenstam A et al (2011) Carbide grain growth in cemented carbides. Acta Mater 59:1912–1923CrossRefGoogle Scholar
  58. 58.
    McKie A, Herrmann M, Sigalas I et al (2013) Suppresion of abnormal grain growth in fine grained polycrystalline diamond materials (PCD). Int J Refr Met Hard Mater 41:66–72CrossRefGoogle Scholar
  59. 59.
    Novikov VY (2011) On abnormal grain growth in nanocrystalline materials induced by small particles. Int J Mater Res 4:446–451Google Scholar
  60. 60.
    Novikov VY (2013) Grain growth suppression in nanocrystalline materials. Mater Lett 100:271–273CrossRefGoogle Scholar
  61. 61.
    Franke O, Leisen D, Gleiter H et al (2014) Thermal and plastic behavior of nanoglasses. J Mater Res 29:1210–1216CrossRefGoogle Scholar
  62. 62.
    Hultman L, Mitterer C (2006) Thermal stability of advanced nanostructured wear resistant coatings. In: Cavaleiro A, De Hosson JT (eds) Nanostructured coatings. Springer, New York, pp 609–656Google Scholar
  63. 63.
    Mayrhofer PH, Mitterer C, Hultman L et al (2006) Microstructural design of hard coatings. Progr Mater Sci 51:1032–1114Google Scholar
  64. 64.
    Andrievski RA (2007) Nanostructured superhard films as typical nanomaterials. Surf Coat Technol 201:6112–6116CrossRefGoogle Scholar
  65. 65.
    Levashov EA, Shtansky DV (2007) Multifunctional nanostructured films. Russ Chem Rev 76:463–470CrossRefGoogle Scholar
  66. 66.
    Pogrebnjak AD, Shpak AP, Azarenkov NA et al (2009) Structures and properties of hard and superhard nanocomposite coatings. Phys-Usp 52:29–54CrossRefGoogle Scholar
  67. 67.
    Veprek S (2013) Recent search for new superhard materials: Go nano! J Vac Sci Technol A 31:050822 (1–33)Google Scholar
  68. 68.
    Schlögl M, Paulitsch J, Mayrhofer PH (2014) Thermal stability of CrN/AlN superlattice coatings. Surf Coat Technol 240:250–254CrossRefGoogle Scholar
  69. 69.
    Kuptsov KA, Kiryukhantsev-Korneev PhV, Sheveyko AN et al (2011) Structural transformation in TiAlSiCN coatings in the temperature range 900–1600 °C. Acta Mater 83:408–418CrossRefGoogle Scholar
  70. 70.
    Firstov SA, Gorban’ VF, Danilenko NI et al (2014) Thermal stability of ultrahard nitride coatings from high-entropy multicomponent Ti–V–Zr–Nb–Hf alloy. Powd Metall Met Ceram 52(9–10):560–566Google Scholar
  71. 71.
    Shtansky DV, Kuptsov KA, Kiryukhantsev-Korneev PhV et al (2012) High thermal stability of TiAlSiCN coatings with “comb” like nanocrystalline structure. Surf Coat Technol 206:4840–4849CrossRefGoogle Scholar
  72. 72.
    Pogrebnjak AD (2013) Structure and properties of nanostructured (Ti–Hf–Zr–V–Nb)N coatings. J Nanomater 2013:780125 (1–12)Google Scholar
  73. 73.
    Veprek S (1999) The search for novel superhard materials. J Vac Sci Technol A Vac Surf Films 17:2401–2420CrossRefGoogle Scholar
  74. 74.
    Veprek S, Veprek-Hejman MJG (2008) Industrial applications of superhard nanocomposites coatings. Surf Coat Technol 202:5063–5073CrossRefGoogle Scholar
  75. 75.
    Veprek S, Argon AS (2002) Towards the understanding of mechanical properties of super- and ultrahard nanocomposites. J Vac Sci Technol B 20:650–664CrossRefGoogle Scholar
  76. 76.
    Männling H-D, Patil DS, Moto K et al (2001) Thermal stability of superhard nanocomposites coatings consisting immiscible nitrides. Surf Coat Technol 146–147:263–267CrossRefGoogle Scholar
  77. 77.
    Kiryukhantsev-Korneev PhV, Shtansky DV, Petrzhik MI et al (2007) Thermal stability and oxidation resistance of Ti–B–N, Ti–Cr–B–N, Ti–Si–B–N, and Ti–Al–Si–B–N films. Surf Coat Technol 201:6143–6147CrossRefGoogle Scholar
  78. 78.
    Chui P, Sun K (2014) Thermal stability of a nanostructured layer on the surface of 316L stainless steel. J Mater Res 29:556–560CrossRefGoogle Scholar
  79. 79.
    Wang Q, Yin Y, Sun Q et al (2014) Gradient nano microstructure and its formation in pure titanium produced by surface rolling treatment. J Mater Res 29:569–577CrossRefGoogle Scholar
  80. 80.
    Detor AJ, Deal AD, Hanlon T (2012) Grain boundary engineering alloy 706 for improved high temperature performance. In: Huron ES, Reed RC, Hardy Mc et al (eds), Superalloys 2012: 12th international symposium on superalloys, TMS, Wiley, Hoboken, pp 873–880Google Scholar
  81. 81.
    Saber M, Koch CC, Scattergood RO (2015) Thermodynamic grain size stabilization models: an overview. Mater Rev Lett 3:65–75CrossRefGoogle Scholar
  82. 82.
    Ma T, Hedström P, Ström V et al (2015) Self-organizing nanostructured lamellar (Ti, Zr)C—a superhard mixed carbide. Int J Refr Met Hard Mater 51:25–28Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rostislav A. Andrievski
    • 1
    Email author
  • Arsen V. Khatchoyan
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Institute of Structural MacrokineticsRussian Academy of SciencesChernogolovka, Moscow AreaRussia

Personalised recommendations