Advertisement

Introduction

  • Rostislav A. AndrievskiEmail author
  • Arsen V. Khatchoyan
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 230)

Abstract

In this introductory chapter, attention is drawn to the rapid growth of information flow in the field of nanomaterials (NMs) and nanotechnologies. This growth has since the mid 90-ies almost exponential in nature, far ahead of the information accumulation in other areas of materials science and technology. Briefly, the NMs concept put forward in the works of Prof. H. Gleiter and his followers is described. There has recently been a heightened interest to the problem of the behavior of substances and materials in extreme conditions. The definition of extreme conditions with regard to NMs due to their peculiarity as unstable objects is specified. The main topics of monograph, such as the NMs behavior in extreme conditions of high temperatures, irradiation with ions and neutrons, as well as high mechanical and corrosion effects, are shortly described.

Keywords

Residual Stress Triple Junction Science Citation Index Expand Corrosion Impact High Mass Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Eaglesham DJ (2005) The nano age? MRS Bull 30:260CrossRefGoogle Scholar
  2. 2.
    Fortov VE (2010) Ekstremal’nye Sostoyaniya Veshchestva (Extreme States of Matter). FIZMATLIT, Moscow (in Russian)Google Scholar
  3. 3.
    Hemley RJ, Crabtree GW, Buchanan MV (2009) Materials in extreme environments. Phys Today 62(11):32–37CrossRefGoogle Scholar
  4. 4.
    Misra A, Thilly L (2010) Structural metals at extremes. MRS Bull 35:965–972Google Scholar
  5. 5.
    Boldyreva EV (2012) Supramolecular systems in extreme environments. Herald Russ Acad Sci 82:982–991CrossRefGoogle Scholar
  6. 6.
    Fortov VE, Mintsev VB (2013) Extreme states of matter on the earth and in cosmos: is there any chemistry beyond the megabar? Russ Chem Rev 82:597–615CrossRefGoogle Scholar
  7. 7.
    Bourne N (2013) Materials in mechanical extremes – fundamentals and applications. Cambridge University Press, New YorkCrossRefGoogle Scholar
  8. 8.
    Low IM, Sakka Y, Hu CF (eds) (2013) MAX phases and ultra-high temperature ceramics for extreme environments. IGI Global, HersheyGoogle Scholar
  9. 9.
    Bini R, Schetto V (2014) Materials under extreme conditions. molecular crystals at high pressure. World Scientific Publishing, New JerseyGoogle Scholar
  10. 10.
    Fahrenholtz WG, Wuchina EJ, Lee WE et al (eds) (2014) Ultra-high temperature ceramics. Materials for extreme environment applications. The American Ceramic Society, Wiley, New JerseyGoogle Scholar
  11. 11.
    Andrievski RA (2014) Nanostructures under extremes. Phys-Usp 57:945–958CrossRefGoogle Scholar
  12. 12.
    Poole ChP, Owens FJ (2003) Introduction to nanotechnology. Wiley, WeinheimGoogle Scholar
  13. 13.
    Koch CC, Ovid’ko IA, Seal S et al (2007) Structural nanocrystalline materials: fundamentals and applications. Cambridge University Press, CambridgeGoogle Scholar
  14. 14.
    Cavaleiro A, De Hosson JT (eds) (2006) Nanostructured coatings. Springer, HeidelbergGoogle Scholar
  15. 15.
    Valiev RZ, Zhilyaev AP, Langdon TG (2014) Bulk nanostructured materials: fundamentals and applications. Wiley, WeinheimGoogle Scholar
  16. 16.
    Marquardt P, Gleiter H (1981) Herstellung und eigenschaften von mikrokristallinen festkörpern. In: Heinicke W (ed) Proceedings of the Deutsche Physikalische Gesellschaft, Verhandlungen DPG (VI), vol 16. Physik Verlag GmbH, Weinheim, p 375Google Scholar
  17. 17.
    Gleiter H (1981) Materials with ultrafine grain size. In: Hansen N, Leffers T, Lilholt H (eds) Deformation of polycrystals. RISO Nat Lab, Roskilde, pp 15–21Google Scholar
  18. 18.
    Birringer R, Gleiter H, Klein H-P et al (1984) Nanocrystalline materials: an approach to a novel solid structure with gas-like disorder? Phys Lett 102:365–369CrossRefGoogle Scholar
  19. 19.
    Birringer R, Herr U, Gleiter H (1986) Nanocrystalline materials—a first report. Trans Jap Inst Met Suppl 27:43–52Google Scholar
  20. 20.
    Gleiter H (1989) Nanostructured materials. Progr Mater Sci 33:223–315CrossRefGoogle Scholar
  21. 21.
    Palumbo G, Erb U, Aust K (1990) Triple line disclination effect on the mechanical behavior of materials. Scr Met Mater 24:1347–1350CrossRefGoogle Scholar
  22. 22.
    Gleiter H (1995) Nanostructured materials: state of the art and perspectives. Nanostr Mater 6:3–14CrossRefGoogle Scholar
  23. 23.
    Gleiter H, Weissmüller J, Wollersheim O et al (2001) Nanocrystalline materials: a way to solids with tunable electron structure and properties? Acta Mater 48:737–745CrossRefGoogle Scholar
  24. 24.
    Gleiter H (2008) Our thoughts are ours, their ends none of our own: are there ways to synthesize materials beyond the limitation today? Acta Mater 56:5875–5893CrossRefGoogle Scholar
  25. 25.
    Gleiter H (2013) Nanoglasses: a new class of nanocrystalline materials. Beilst J Nanotech 4:517–533CrossRefGoogle Scholar
  26. 26.
    Gleiter H, Schimmel Th, Han H (2014) Nanostructured solids – from nano-glasses to quantum transistors. Nano Today 9:17–66CrossRefGoogle Scholar
  27. 27.
    Andrievski RA (2013) Metallic nano/microglasses: new approaches in nanostructured materials science. Phys-Usp 56:261–268CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rostislav A. Andrievski
    • 1
    Email author
  • Arsen V. Khatchoyan
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Institute of Structural MacrokineticsRussian Academy of SciencesChernogolovka, Moscow AreaRussia

Personalised recommendations