Skip to main content

Antimicrobial Polymeric Hydrogels

  • Chapter
  • First Online:
Book cover Polymeric Hydrogels as Smart Biomaterials

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Microbial infections continue to endanger human health and present a great economic problem to society. To solve this predicament, great efforts to develop macromolecules that can inhibit pathogens without incurring pathogen resistance are needed. The development of antimicrobial polymeric hydrogels has grown considerably as an important alternative in the fight against pathogen drug resistance. This chapter summarizes significant and recent progress in the manufacture and application of antimicrobial hydrogels. Advances in macromolecular sciences have made it possible to modify molecular structure and functionality to generate broad-spectrum antimicrobial activity. As a result, the range of biomedical applications has expanded significantly, from wound dressings, tissue engineering, medical device, and surface coatings; to creams for the treatment and deterrence of multi-drug resistant strains. Both natural and synthetic hydrogels possessing either inherent antimicrobial properties or loaded with antibiotics, antimicrobial peptides, or metal nanoparticles are discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salem SAM, Zuel-Fakkar NM (2014) Targeting the molecular basis of resistance. Front Anti-Infect Drug Discov 2:224–268

    CAS  Google Scholar 

  2. Tomayko JF, Rex JH, Tenero DM, Goldberger M, Eisenstein BI (2014) The challenge of antimicrobial resistance: new regulatory tools to support product development. Clin Pharmacol Ther (N. Y., NY, U. S.) 96:166–168

    Google Scholar 

  3. Bassetti M, Merelli M, Temperoni C, Astilean A (2013) New antibiotics for bad bugs: where are we? Ann Clin Microbiol Antimicrob 12, 22/1-22/15

    Google Scholar 

  4. Wichterle O, Lim D (1960) Hydrophilic Gels for Biological Use. Nature 185:117–118

    Article  Google Scholar 

  5. Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453

    Article  CAS  Google Scholar 

  6. Lau HK, Kiick KL (2015) Opportunities for multicomponent hybrid hydrogels in biomedical applications. Biomacromolecules 16:28–42

    Article  CAS  Google Scholar 

  7. Patenaude M, Smeets NMB, Hoare T (2014) Designing injectable, covalently cross-linked hydrogels for biomedical applications. Macromol Rapid Commun 35:598–617

    Article  CAS  Google Scholar 

  8. Whittaker J, Balu R, Choudhury NR, Dutta NK (2014) Biomimetic protein-based elastomeric hydrogels for biomedical applications. Polym Int 63:1545–1557

    Article  CAS  Google Scholar 

  9. Ng VWL, Chan JMW, Sardon H, Ono RJ, Garcia JM, Yang YY, Hedrick JL (2014) Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv Drug Deliv Rev 78:46–62

    Article  CAS  Google Scholar 

  10. Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17:12276–12286

    Article  CAS  Google Scholar 

  11. Muñoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37:281–339

    Article  Google Scholar 

  12. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145

    Article  CAS  Google Scholar 

  13. Singh R, Smitha MS, Singh SP (2014) The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol 14:4745–4756

    Article  CAS  Google Scholar 

  14. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014

    Article  CAS  Google Scholar 

  15. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  Google Scholar 

  16. Zhu L, Peng L, Zhang Y-Q (2015) The processing of chitosan and its derivatives and their application for postoperative anti-adhesion. Mini Rev Med Chem 15(4):330–337

    Google Scholar 

  17. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  CAS  Google Scholar 

  18. Lichter JA, Rubner MF (2009) Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations. Langmuir 25:7686–7694

    Article  CAS  Google Scholar 

  19. Li P, Poon YF, Li W, Zhu H-Y, Yeap SH, Cao Y, Qi X, Zhou C, Lamrani M, Beuerman RW, Kang E-T, Mu Y, Li CM, Chang MW, Leong SSJ, Chan-Park MB (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10:149–156

    Article  CAS  Google Scholar 

  20. Jiang Q, Xu J, Li T, Qiao C, Li Y (2014) Synthesis and antibacterial activities of quaternary ammonium salt of gelatin. J Macromol Sci Part B: Phys 53:133–141

    Article  CAS  Google Scholar 

  21. Mohamed NA, Fahmy MM (2012) Synthesis and antimicrobial activity of some novel cross-linked chitosan hydrogels. Int J Mol Sci 13:11194–11209

    Article  CAS  Google Scholar 

  22. Venkatesan J, Jayakumar R, Mohandas A, Bhatnagar I, Kim S-K (2014) Antimicrobial activity of chitosan-carbon nanotube hydrogels. Materials 7(3946–3955):10

    Google Scholar 

  23. Aziz MA, Cabral JD, Brooks HJL, Moratti SC, Hanton LR (2012) Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use. Antimicrob Agents Chemother 56:280–287

    Article  CAS  Google Scholar 

  24. Cabral JD, Roxburgh M, Shi Z, Liu L, McConnell M, Williams G, Evans N, Hanton LR, Simpson J, Moratti SC, Robinson BH, Wormald PJ, Robinson S (2014) Synthesis, physiochemical characterization, and biocompatibility of a chitosan/dextran-based hydrogel for postsurgical adhesion prevention. J Mater Sci: Mater Med 25:2743–2756

    CAS  Google Scholar 

  25. Liu G, Shi Z, Kuriger T, Hanton LR, Simpson J, Moratti SC, Robinson BH, Athanasiadis T, Valentine R, Wormald PJ, Robinson S (2009) Synthesis and characterization of chitosan/dextran-based hydrogels for surgical use. Macromol Symp 279:151–157

    Article  CAS  Google Scholar 

  26. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  Google Scholar 

  27. Morais DS, Rodrigues MA, Lopes MA, Coelho MJ, Mauricio AC, Gomes R, Amorim I, Ferraz MP, Santos JD, Botelho CM (2013) Biological evaluation of alginate-based hydrogels, with antimicrobial features by Ce(III) incorporation, as vehicles for a bone substitute. J Mater Sci Mater Med 24:2145–2155

    Article  CAS  Google Scholar 

  28. Catanzano O, Straccia MC, Miro A, Ungaro F, Romano I, Mazzarella G, Santagata G, Quaglia F, Laurienzo P, Malinconico M (2015) Spray-by-spray in situ cross-linking alginate hydrogels delivering a tea tree oil microemulsion. Eur J Pharm Sci 66:20–28

    Article  CAS  Google Scholar 

  29. Obradovic B, Miskovic-Stankovic V (2013) Silver nanoparticles in alginate solutions and hydrogels aimed for biomedical applications. Nova Science Publishers, Inc., 247–260

    Google Scholar 

  30. Ghasemzadeh H, Ghanaat F (2014) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21:1–14

    Article  CAS  Google Scholar 

  31. Stojkovska J, Kostic D, Jovanovic Z, Vukasinovic-Sekulic M, Miskovic-Stankovic V, Obradovic B (2014) A comprehensive approach to in vitro functional evaluation of Ag/alginate nanocomposite hydrogels. Carbohydr Polym 111:305–314

    Article  CAS  Google Scholar 

  32. Straccia MC, Romano I, Oliva A, Santagata G, Laurienzo P (2014) Crosslinker effects on functional properties of alginate/N-succinyl chitosan based hydrogels. Carbohydr Polym 108:321–330

    Article  CAS  Google Scholar 

  33. Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51:149–177

    Article  CAS  Google Scholar 

  34. Zhou C, Li P, Qi X, Sharif AR, Poon YF, Cao Y, Chang MW, Leong SS, Chan-Park MB (2011) A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine. Biomaterials 32:2704–2712

    Article  CAS  Google Scholar 

  35. Altunbas A, Pochan DJ (2012) Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering. Top Curr Chem 310:135–167

    Article  CAS  Google Scholar 

  36. Liu SQ, Yang C, Huang Y, Ding X, Li Y, Fan WM, Hedrick JL, Yang Y-Y (2012) Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly(ethylene glycol) via Michael addition. Adv Mater 24:6484–6489

    Article  CAS  Google Scholar 

  37. Fjell CD, Hiss JA, Hancock REW, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discovery 11:37–51

    CAS  Google Scholar 

  38. Mccloskey AP, Gilmore BF, Laverty G (2014) Evolution of antimicrobial peptides to self-assembled peptides for biomaterial applications. Pathogens 3, 791–821, 31 pp

    Google Scholar 

  39. Rajagopal K, Lamm MS, Haines-Butterick LA, Pochan DJ, Schneider JP (2009) Tuning the pH responsiveness of β-Hairpin peptide folding, self-assembly, and hydrogel material formation. Biomacromolecules 10:2619–2625

    Article  CAS  Google Scholar 

  40. Salick DA, Kretsinger JK, Pochan DJ, Schneider JP (2007) Inherent antibacterial activity of a peptide-based β-Hairpin hydrogel. J Am Chem Soc 129:14793–14799

    Article  CAS  Google Scholar 

  41. Veiga AS, Sinthuvanich C, Gaspar D, Franquelim HG, Castanho MARB, Schneider JP (2012) Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials 33:8907–8916

    Article  CAS  Google Scholar 

  42. Marchesan S, Qu Y, Waddington LJ, Easton CD, Glattauer V, Lithgow TJ, McLean KM, Forsythe JS, Hartley PG (2013) Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel. Biomaterials 34:3678–3687

    Article  CAS  Google Scholar 

  43. Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124:15030–15037

    Article  CAS  Google Scholar 

  44. Tanabe T, Okitsu N, Tachibana A, Yamauchi K (2002) Preparation and characterization of keratin-chitosan composite film. Biomaterials 23:817–825

    Article  CAS  Google Scholar 

  45. Yamauchi K, Hojo H, Yamamoto Y, Tanabe T (2003) Enhanced cell adhesion on RGDS-carrying keratin film. Mater Sci Eng C C23:467–472

    Article  CAS  Google Scholar 

  46. Sahiner M, Sagbas S, Bitlisli BO (2015) p(AAm/TA)-based IPN hydrogel films with antimicrobial and antioxidant properties for biomedical applications. Journal of Applied Polymer Science 132, n/a-n/a

    Google Scholar 

  47. Munoz-Bonilla A, Fernandez-Garcia M (2015) The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. Eur Polym J 65:46–62

    Article  CAS  Google Scholar 

  48. Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16:2099–2116

    Article  CAS  Google Scholar 

  49. Pinto RJ, Daina S, Sadocco P, Pascoal Neto C, Trindade T (2013). Antibacterial activity of nanocomposites of copper and cellulose. Biomed Res Int, 280512

    Google Scholar 

  50. Mary G, Bajpai SK, Chand N (2009) Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Polym Sci 113:757–766

    Article  CAS  Google Scholar 

  51. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384

    Article  CAS  Google Scholar 

  52. Sintubin L, de Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749

    Article  CAS  Google Scholar 

  53. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    Article  CAS  Google Scholar 

  54. Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590

    Article  CAS  Google Scholar 

  55. Du H, Zha G, Gao L, Wang H, Li X, Shen Z, Zhu W (2014) Fully biodegradable antibacterial hydrogels via thiol-ene “click” chemistry. Polym Chem 5:4002–4008

    Article  CAS  Google Scholar 

  56. Liu SQ, Yang C, Huang Y, Ding X, Li Y, Fan WM, Hedrick JL, Yang Y-Y (2012b) Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly(ethylene glycol) via Michael addition. Adv Mater (Weinheim, Ger.) 24, 6484–6489

    Google Scholar 

  57. Li P, Li X, Saravanan R, Li CM, Leong SSJ (2012) Antimicrobial macromolecules: synthesis methods and future applications. RSC Adv 2:4031–4044

    Article  CAS  Google Scholar 

  58. Wei G, Yang L, Chu L (2010) Progress in researches on synthetic antimicrobial macromolecular polymers. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 27:953–957

    CAS  Google Scholar 

  59. Wang Q, Uzunoglu E, Wu Y, Libera M (2012) Self-assembled poly(ethylene glycol)-co-acrylic acid microgels to inhibit bacterial colonization of synthetic surfaces. ACS Appl Mater Interfaces 4:2498–2506

    Article  CAS  Google Scholar 

  60. Colak S, Tew GN (2012) Dual-functional ROMP-based betaines: effect of hydrophilicity and backbone structure on nonfouling properties. Langmuir 28:666–675

    Article  CAS  Google Scholar 

  61. Sparks SM, Waite CL, Harmon AM, Nusblat LM, Roth CM, Uhrich KE (2011) Efficient intracellular siRNA delivery by ethyleneimine-modified amphiphilic macromolecules. Macromol Biosci 11:1192–1200

    Article  CAS  Google Scholar 

  62. Som A, Navasa N, Percher A, Scott RW, Tew GN, Anguita J (2012) Identification of synthetic host defense peptide mimics that exert dual antimicrobial and anti-inflammatory activities. Clin Vaccine Immunol 19:1784–1791

    Article  CAS  Google Scholar 

  63. Allison BC, Applegate BM, Youngblood JP (2007) Hemocompatibility of hydrophilic antimicrobial copolymers of alkylated 4-vinylpyridine. Biomacromolecules 8:2995–2999

    Article  CAS  Google Scholar 

  64. Oda Y, Kanaoka S, Sato T, Aoshima S, Kuroda K (2011) Block versus random amphiphilic copolymers as antibacterial agents. Biomacromolecules 12:3581–3591

    Article  CAS  Google Scholar 

  65. Chakraborty S, Liu R, Lemke JJ, Hayouka Z, Welch RA, Weisblum B, Masters KS, Gellman SH (2013) Effects of cyclic vs. acyclic hydrophobic subunits on the chemical structure and biological properties of nylon-3 co-polymers. ACS Macro Lett 2

    Google Scholar 

  66. Engler AC, Shukla A, Puranam S, Buss HG, Jreige N, Hammond PT (2011) Effects of side group functionality and molecular weight on the activity of synthetic antimicrobial polypeptides. Biomacromolecules 12:1666–1674

    Article  CAS  Google Scholar 

  67. Zhou C, Qi X, Li P, Chen WN, Mouad L, Chang MW, Leong SS, Chan-Park MB (2010) High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of alpha-aminoacid-N-carboxyanhydrides. Biomacromolecules 11:60–67

    Article  CAS  Google Scholar 

  68. Engler AC, Tan JP, Ong ZY, Coady DJ, Ng VW, Yang YY, Hedrick JL (2013) Antimicrobial polycarbonates: investigating the impact of balancing charge and hydrophobicity using a same-centered polymer approach. Biomacromolecules 14:4331–4339

    Article  CAS  Google Scholar 

  69. Zhang L, Cao Z, Bai T, Carr L, Ella-Menye JR, Irvin C, Ratner BD, Jiang S (2013) Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol 31:553–556

    Article  CAS  Google Scholar 

  70. Jiang S, Cao Z (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932

    Article  CAS  Google Scholar 

  71. Lee ALZ, Ng VWL, Wang W, Hedrick JL, Yang YY (2013) Block copolymer mixtures as antimicrobial hydrogels for biofilm eradication. Biomaterials 34:10278–10286

    Article  CAS  Google Scholar 

  72. Lee AL, Ng VW, Wang W, Hedrick JL, Yang YY (2013) Block copolymer mixtures as antimicrobial hydrogels for biofilm eradication. Biomaterials 34:10278–10286

    Article  CAS  Google Scholar 

  73. Li Y, Fukushima K, Coady DJ, Engler AC, Liu S, Huang Y, Cho JS, Guo Y, Miller LS, Tan JPK, Ee PLR, Fan W, Yang YY, Hedrick JL (2013) Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies. Angew Chem Int Ed 52:674–678

    Article  CAS  Google Scholar 

  74. Cao Z, Mi L, Mendiola J, Ella-Menye JR, Zhang L, Xue H, Jiang S (2012) Reversibly switching the function of a surface between attacking and defending against bacteria. Angew Chem Int Ed Engl 51:2602–2605

    Article  CAS  Google Scholar 

  75. Cao B, Li L, Tang Q, Cheng G (2013) The impact of structure on elasticity, switchability, stability and functionality of an all-in-one carboxybetaine elastomer. Biomaterials 34:7592–7600

    Article  CAS  Google Scholar 

  76. Cao B, Tang Q, Li L, Humble J, Wu H, Liu L, Cheng G (2013) Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties. Adv Healthc Mater 2:1096–1102

    Article  CAS  Google Scholar 

  77. Ng VWL, Ke X, Lee ALZ, Hedrick JL, Yang YY (2013) Synergistic co-delivery of membrane-disrupting polymers with commercial antibiotics against highly opportunistic bacteria. Adv Mater (Weinheim, Ger.) 25, 6730–6736

    Google Scholar 

  78. Lakes AL, Peyyala R, Ebersole JL, Puleo DA, Hilt JZ, Dziubla TD (2014) Synthesis and characterization of an antibacterial hydrogel containing covalently bound vancomycin. Biomacromolecules 15:3009–3018

    Article  CAS  Google Scholar 

  79. Vyhnalkova R, Eisenberg A, van de Ven T (2011) Bactericidal block copolymer micelles. Macromol Biosci 11:639–651

    Article  CAS  Google Scholar 

  80. Ambika S, Arunachalam S, Arun R, Premkumar K (2013) Synthesis, nucleic acid binding, anticancer and antimicrobial activities of polymer-copper(II) complexes containing intercalative phenanthroline ligand(DPQ). RSC Adv 3:16456–16468

    Article  CAS  Google Scholar 

  81. Nishat N, Rasool R, Parveen S, Khan SA (2011) New antimicrobial agents: The synthesis of schiff base polymers containing transition metals and their characterization and applications. J Appl Polym Sci 122:2756–2764

    Article  CAS  Google Scholar 

  82. Pavlukhina S, Lu Y, Patimetha A, Libera M, Sukhishvili S (2010) Polymer multilayers with pH-triggered release of antibacterial agents. Biomacromolecules 11:3448–3456

    Article  CAS  Google Scholar 

  83. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315:389–395

    Article  CAS  Google Scholar 

  84. Ravindra S, Varaprasad K, Rajinikanth V, Mulaba-Bafubiandi AF, Venkata Surya Ramam K (2013) Studieson curcumin loaded poly(n-isopropylacrylamide) silver nanocomposite hydrogels for antibacterial and drug releasing applications. J Macromol Sci, Part A: Pure Appl Chem 50:1230–1240

    Google Scholar 

  85. Cometa S, Iatta R, Ricci MA, Ferretti C, de Giglio E (2013) Analytical characterization and antimicrobial properties of novel copper nanoparticle–loaded electrosynthesized hydrogel coatings. J Bioactive Compatible Polym 28:508–522

    Article  CAS  Google Scholar 

  86. Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Raju KM (2013) Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria. Carbohydr Polym 92:2193–2200

    Article  CAS  Google Scholar 

  87. Gao W, Vecchio D, Li J, Zhu J, Zhang Q, Fu V, Li J, Thamphiwatana S, Lu D, Zhang L (2014) Hydrogel containing nanoparticle-stabilized liposomes for topical antimicrobial delivery. ACS Nano 8:2900–2907

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaydee D. Cabral .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cabral, J.D. (2016). Antimicrobial Polymeric Hydrogels. In: Kalia, S. (eds) Polymeric Hydrogels as Smart Biomaterials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-25322-0_6

Download citation

Publish with us

Policies and ethics