Skip to main content

Protein-Based Hydrogels

  • Chapter
  • First Online:

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Protein-based hydrogels are composed of isolated or enriched proteins from natural extracellular matrix. Inherent and controllable bioactivity makes these hydrogels promising candidates as smart biomaterials for drug delivery, tissue engineering and regenerative medicine, and other applications. Desirable characteristics for these applications include natural cell binding, cell degradable, and growth factor-binding sequences. This chapter covers the unique properties of a variety of proteins (collagen, gelatin, fibrin, silk, elastin, keratin, and decellularized, tissue-specific extracellular matrix) as well as hydrogel synthesis, fabrication, modification, and established applications. Conditions of solubility and the mechanism of the sol–gel transition are discussed. Since each protein presented undergoes self-assembly to form a gel network, gelation parameters that affect this assembly and subsequently the gel ultrastructure are specifically presented. Emerging applications and technologies for protein-based hydrogels are also briefly mentioned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ricard-Blum S (2011) The Collagen Family. Cold Spring Harb Perspect Biol 3:1–19. doi:10.1101/cshperspect.a004978

    Article  CAS  Google Scholar 

  2. Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316 (Pt 1:1–11)

    Google Scholar 

  3. Antoine EE, Vlachos PP, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev 20:1–14. doi:10.1089/ten.TEB.2014.0086

    Article  CAS  Google Scholar 

  4. Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, Hyun JK (2013) Collagen—emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 65:429–456. doi:10.1016/j.addr.2012.08.010

    Google Scholar 

  5. Chattopadhyay S, Raines RT (2014) Review collagen-based biomaterials for wound healing. Biopolymers 101:821–833. doi:10.1002/bip.22486

    Article  CAS  Google Scholar 

  6. Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8:3191–3200. doi:10.1016/j.actbio.2012.06.014

    Article  CAS  Google Scholar 

  7. Kew SJ, Gwynne JH, Enea D, Abu-Rub M, Pandit A, Zeugolis D, Brooks RA, Rushton N, Best SM, Cameron RE (2011) Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials. Acta Biomater 7:3237–3247. doi:10.1016/j.actbio.2011.06.002

    Google Scholar 

  8. Wang X, Han C, Hu X, Sun H, You C, Gao C, Haiyang Y (2011) Applications of knitted mesh fabrication techniques to scaffolds for tissue engineering and regenerative medicine. J Mech Behav Biomed Mater 4:922–932. doi:10.1016/j.jmbbm.2011.04.009

    Article  CAS  Google Scholar 

  9. Zheng W, Zhang W, Jiang X (2010) Biomimetic collagen nanofibrous materials for bone tissue engineering. Adv Eng Mater 12:B451–B466. doi:10.1002/adem.200980087

    Article  CAS  Google Scholar 

  10. Walters BD, Stegemann JP (2014) Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater 10:1488–1501. doi:10.1016/j.actbio.2013.08.038

    Article  CAS  Google Scholar 

  11. Carey SP, Kraning-Rush CM, Williams RM, Reinhart-King CA (2012) Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials 33:4157–4165. doi:10.1016/j.biomaterials.2012.02.029

    Google Scholar 

  12. Chrobak KM, Potter DR, Tien J (2006) Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71:185–196. doi:10.1016/j.mvr.2006.02.005

    Article  CAS  Google Scholar 

  13. Yang YL, Motte S, Kaufman LJ (2010) Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials 31:5678–5688. doi:10.1016/j.biomaterials.2010.03.039

    Article  CAS  Google Scholar 

  14. Gillette BM, Rossen NS, Das N, Leong D, Wang M, Dugar A, Sia SK (2011) Engineering extracellular matrix structure in 3D multiphase tissues. Biomaterials 32:8067–8076. doi:10.1016/j.biomaterials.2011.05.043

    Article  CAS  Google Scholar 

  15. Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH, van Rheenen J, Deryugina E, Friedl P (2009) Collagen-based cell migration models in vitro and in vivo. Semin Cell Dev Biol 20:931–941. doi:10.1016/j.semcdb.2009.08.005

    Article  CAS  Google Scholar 

  16. Abou Neel EA, Cheema U, Knowles J, Brown R, Nazhat S (2006) Use of multiple unconfined compression for control of collagen gel scaffold density and mechanical properties. Soft Matter 2(11):986–992. doi:10.1039/b609784g

    Google Scholar 

  17. Brown RA, Wiseman M, Chuo CB, Cheema U, Nazhat SN (2005) Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv Funct Mater 15:1762–1770. doi:10.1002/adfm.200500042

    Google Scholar 

  18. Feng Z, Tateishi Y, Nomura Y, Kitajima T, Nakamura T (2006) Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: toward the fabrication of small tendon grafts. J Artif Organs 9:220–225. doi:10.1007/s10047-006-0354-z

    Article  CAS  Google Scholar 

  19. Gigante A, Cesari E, Busilacchi A, Manzotti S, Kyriakidou K, Greco F, Di Primio R, Mattioli-Belmonte M (2009) Collagen I membranes for tendon repair: Effect of collagen fiber orientation on cell behavior. J Orthop Res 27:826–832. doi:10.1002/jor.20812

    Article  CAS  Google Scholar 

  20. Seliktar D, Black RA, Vito RP, Nerem RM (2000) Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng 28:351–362. doi:10.1114/1.275

    Google Scholar 

  21. Huang G, Wang L, Wang S, Han Y, Wu J, Zhang Q, Xu F, Lu TJ (2012) Engineering three-dimensional cell mechanical microenvironment with hydrogels. Biofabrication 4:042001. doi:10.1088/1758-5082/4/4/042001

    Article  CAS  Google Scholar 

  22. Nguyen TD, Liang R, Woo SL-Y, Burton SD, Wu C, Almarza A, Sacks MS, Abramowitch S (2009) Effects of cell seeding and cyclic stretch on the fiber remodeling in an extracellular matrix-derived bioscaffold. Tissue Eng Part A 15:957–963. doi:10.1089/ten.tea.2007.0384

    Article  CAS  Google Scholar 

  23. Pins GD, Christiansen DL, Patel R, Silver FH (1997) Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys J 73:2164–2172. doi:10.1016/S0006-3495(97)78247-X

    Article  CAS  Google Scholar 

  24. Ceballos D, Navarro X, Dubey N, Wendelschafer-Crabb G, Kennedy WR, Tranquillo RT (1999) Magnetically aligned collagen gel filling a collagen nerve guide improves peripheral nerve regeneration. Exp Neurol 158:290–300. doi:10.1006/exnr.1999.7111

    Article  CAS  Google Scholar 

  25. Chen S, Hirota N, Okuda M, Takeguchi M, Kobayashi H, Hanagata N, Ikoma T (2011) Microstructures and rheological properties of tilapia fish-scale collagen hydrogels with aligned fibrils fabricated under magnetic fields. Acta Biomater 7:644–652. doi:10.1016/j.actbio.2010.09.014

    Article  CAS  Google Scholar 

  26. Torbet J, Ronzière MC (1984) Magnetic alignment of collagen during self-assembly. Biochem J 219:1057–1059

    Article  CAS  Google Scholar 

  27. Guo C, Kaufman LJ (2007) Flow and magnetic field induced collagen alignment. Biomaterials 28:1105–1114. doi:10.1016/j.biomaterials.2006.10.010

    Article  CAS  Google Scholar 

  28. Cheng X, Gurkan UA, Dehen CJ, Tate MP, Hillhouse HW, Simpson GJ, Akkus O (2008) An electrochemical fabrication process for the assembly of anisotropically oriented collagen bundles. Biomaterials 29:3278–3288. doi:10.1016/j.biomaterials.2008.04.028

    Google Scholar 

  29. Saeidi N, Karmelek KP, Paten J a., Zareian R, DiMasi E, Ruberti JW (2012) Molecular crowding of collagen: A pathway to produce highly-organized collagenous structures. Biomaterials 33:7366–7374. doi:10.1016/j.biomaterials.2012.06.041

    Google Scholar 

  30. Hong S, Hsu H-J, Kaunas R, Kameoka J (2012) Collagen microsphere production on a chip. Lab Chip 12:3277. doi:10.1039/c2lc40558j

    Article  CAS  Google Scholar 

  31. Chan BP, Hui TY, Yeung CW, Li J, Mo I, Chan GCF (2007) Self-assembled collagen-human mesenchymal stem cell microspheres for regenerative medicine. Biomaterials 28:4652–4666. doi:10.1016/j.biomaterials.2007.07.041

    Article  CAS  Google Scholar 

  32. Cheng HW, Luk KDK, Cheung KMC, Chan BP (2011) In vitro generation of an osteochondral interface from mesenchymal stem cell-collagen microspheres. Biomaterials 32:1526–1535. doi:10.1016/j.biomaterials.2010.10.021

    Article  CAS  Google Scholar 

  33. Matsunaga YT, Morimoto Y, Takeuchi S (2011) Molding cell beads for rapid construction of macroscopic 3D tissue architecture. Adv Mater 23:90–94. doi:10.1002/adma.201004375

    Article  CAS  Google Scholar 

  34. Bian W, Liau B, Badie N, Bursac N (2009) Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues. Nat Protoc 4:1522–1534. doi:10.1038/nprot.2009.155

    Article  CAS  Google Scholar 

  35. Tang MD, Golden AP, Tien J (2004) Fabrication of collagen gels that contain patterned, micrometer-scale cavities. Adv Mater 16:1345–1348. doi:10.1002/adma.200400766

    Article  CAS  Google Scholar 

  36. Cross VL, Zheng Y, Won Choi N, Verbridge SS, Sutermaster BA, Bonassar LJ, Fischbach C, Stroock AD (2010) Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials 31:8596–8607. doi:10.1016/j.biomaterials.2010.07.072

    Google Scholar 

  37. Golden AP, Tien J (2007) Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720–725. doi:10.1039/b618409j

    Article  CAS  Google Scholar 

  38. Nazhat SN, Abou Neel EA, Kidane A, Ahmed I, Hope C, Kershaw M, Lee PD, Stride E, Saffari N, Knowles JC, Brown RA (2007) Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers. Biomacromolecules 8:543–551. doi:10.1021/bm060715f

    Google Scholar 

  39. Stegemann JP, Kaszuba SN, Rowe SL (2007) Review: advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng 13:2601–2613. doi:10.1089/ten.2007.0196

    Article  CAS  Google Scholar 

  40. Lee W, Lee V, Polio S, Keegan P, Lee JH, Fischer K, Park JK, Yoo SS (2010) On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol Bioeng 105:1178–1186. doi:10.1002/bit.22613

    CAS  Google Scholar 

  41. Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM, Warren WL, Williams SK (2004) Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng 10:1566–1576. doi:10.1089/ten.2004.10.1566

    Article  CAS  Google Scholar 

  42. Smith CM, Christian JJ, Warren WL, Williams SK (2007) Characterizing environmental factors that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool. Tissue Eng 13:373–383. doi:10.1089/ten.2007.13.ft-338

    Article  CAS  Google Scholar 

  43. Chan BK, Wippich CC, Wu CJ, Sivasankar PM, Schmidt G (2012) Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds. Macromol Biosci 12:1490–1501. doi:10.1002/mabi.201200234

    Article  CAS  Google Scholar 

  44. Piechocka IK, Van Oosten ASG, Breuls RGM, Koenderink GH (2011) Rheology of heterotypic collagen networks. Biomacromolecules 12:2797–2805. doi:10.1021/bm200553x

    Article  CAS  Google Scholar 

  45. Saw MM, Chandler B, Ho KM (2012) Benefits and risks of using gelatin solution as a plasma expander for perioperative and critically ill patients: a meta-analysis. Anaesth Intensive Care 40:17–32

    Google Scholar 

  46. Rose JB, Pacelli S, El Haj AJ, Dua HS, Hopkinson A, White LJ, Rose FR a J (2014) Gelatin-based materials in ocular tissue engineering. Materials (Basel) 7:3106–3135. doi:10.3390/ma7043106

    Google Scholar 

  47. Baziwane D, He Q (2003) Gelatin: the paramount food additive. Food Rev Int 19:423–435. doi:10.1081/FRI-120025483

    Article  CAS  Google Scholar 

  48. Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H (2000) Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1:31–38. doi:10.1021/bm990017d

    Google Scholar 

  49. Young S, Wong M, Tabata Y, Mikos AG (2005) Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 109:256–274. doi:10.1016/j.jconrel.2005.09.023

    Article  CAS  Google Scholar 

  50. Lee J (2007) The Use of Gelatin Substrates for Traction Force Microscopy in Rapidly Moving Cells. Methods Cell Biol. doi: 10.1016/S0091-679X(07)83012-3

    Google Scholar 

  51. Kuijpers AJ, Engbers GH, Krijgsveld J, Zaat SA, Dankert J, Feijen J (2000) Cross-linking and characterisation of gelatin matrices for biomedical applications. J Biomater Sci Polym Ed 11:225–243. doi:10.1163/156856200743670

    Article  CAS  Google Scholar 

  52. Yamamoto M, Ikada Y, Tabata Y (2001) Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed 12:77–88

    Article  CAS  Google Scholar 

  53. Kang HW, Tabata Y, Ikada Y (1999) Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 20:1339–1344

    Article  CAS  Google Scholar 

  54. Elzoghby AO (2013) Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J Control Release 172:1075–1091. doi:10.1016/j.jconrel.2013.09.019

    Article  CAS  Google Scholar 

  55. Iwanaga K, Yabuta T, Kakemi M, Morimoto K, Tabata Y, Ikada Y (2003) Usefulness of microspheres composed of gelatin with various cross-linking density. J Microencapsul 20:767–776. doi:10.1080/02652040310001600523

    Article  CAS  Google Scholar 

  56. Wang X, Yan Y, Pan Y, Xiong Z, Liu H, Cheng J, Liu F, Lin F, Wu R, Zhang R, Lu Q (2006) Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 12:83–90. doi:10.1089/ten.2006.12.ft-16

    Article  CAS  Google Scholar 

  57. Thompson JA, Anderson KD, DiPietro JM, Zwiebel JA, Zametta M, Anderson WF, Maciag T (1988) Site-directed neovessel formation in vivo. Science 241:1349–1352. doi:10.1126/science.2457952

    Article  CAS  Google Scholar 

  58. Yamada K, Tabata Y, Yamamoto K, Miyamoto S, Nagata I, Kikuchi H, Ikada Y (1997) Potential efficacy of basic fibroblast growth factor incorporated in biodegradable hydrogels for skull bone regeneration. J Neurosurg 86:871–875. doi:10.3171/jns.1997.86.5.0871

    Article  CAS  Google Scholar 

  59. Yamamoto M, Tabata Y, Hong L, Miyamoto S, Hashimoto N, Ikada Y (2000) Bone regeneration by transforming growth factor β1 released from a biodegradable hydrogel. J Control Release 64:133–142. doi:10.1016/S0168-3659(99)00129-7

    Article  CAS  Google Scholar 

  60. Yamamoto M, Takahashi Y, Tabata Y (2003) Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials 24:4375–4383. doi:10.1016/S0142-9612(03)00337-5

    Article  CAS  Google Scholar 

  61. Holland TA, Tabata Y, Mikos AG (2005) Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101:111–25. doi:10.1016/j.jconrel.2004.07.004

    Google Scholar 

  62. Kojima K, Ignotz RA, Kushibiki T, Tinsley KW, Tabata Y, Vacanti CA (2004) Tissue-engineered trachea from sheep marrow stromal cells with transforming growth factor β2 released from biodegradable microspheres in a nude rat recipient. J Thorac Cardiovasc Surg 128:147–153. doi:10.1016/j.jtcvs.2004.02.038

    Google Scholar 

  63. Nakahara T, Nakamura T, Kobayashi E, Inoue M, Shigeno K, Tabata Y, Eto K, Shimizu Y (2003) Novel approach to regeneration of periodontal tissues based on in situ tissue engineering: effects of controlled release of basic fibroblast growth factor from a sandwich membrane. Tissue Eng 9:153–162. doi:10.1089/107632703762687636

    Article  CAS  Google Scholar 

  64. Fukunaka Y, Iwanaga K, Morimoto K, Kakemi M, Tabata Y (2002) Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation. J Control Release 80:333–343

    Article  CAS  Google Scholar 

  65. Ikada Y, Tabata Y (1998) Protein release from gelatin matrices. Adv Drug Deliv Rev 31:287–301

    Article  CAS  Google Scholar 

  66. La Corte ALC, Philippou H, Arins RAS (2011) Role of fibrin structure in thrombosis and vascular disease, 1st edn. In: Advances in protein chemistry structural biology. doi:10.1016/B978-0-12-381262-9.00003-3

    Google Scholar 

  67. Janmey PA, Winer JP, Weisel JW (2009) Fibrin gels and their clinical and bioengineering applications. J R Soc Interface 6:1–10. doi:10.1098/rsif.2008.0327

    Google Scholar 

  68. Spotnitz WD (2010) Fibrin sealant: past, present, and future: a brief review. World J Surg 34:632–634. doi:10.1007/s00268-009-0252-7

    Article  Google Scholar 

  69. Buchta C, Hedrich HC, Macher M, Höcker P, Redl H (2005) Biochemical characterization of autologous fibrin sealants produced by CryoSeal® and Vivostat® in comparison to the homologous fibrin sealant product Tissucol/Tisseel®. Biomaterials 26:6233–6241. doi:10.1016/j.biomaterials.2005.04.014

    Article  CAS  Google Scholar 

  70. Clark RAF (2003) Fibrin is a many splendored thing. J Invest Dermatol 121:1. doi:10.1046/j.1523-1747.2003.12575.x

    Article  Google Scholar 

  71. Carless PA, Anthony DM, Henry DA (2002) Systematic review of the use of fibrin sealant to minimize perioperative allogeneic blood transfusion. Br J Surg 89:695–703. doi:10.1046/j.1365-2168.2002.02098.x

    Google Scholar 

  72. Ahmed TAE, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 14:199–215. doi:10.1089/ten.teb.2007.0435

    Google Scholar 

  73. Anitua E, Prado R, Orive G (2013) Endogenous morphogens and fibrin bioscaffolds for stem cell therapeutics. Trends Biotechnol 31:364–374. doi:10.1016/j.tibtech.2013.04.003

    Article  CAS  Google Scholar 

  74. Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF (2009) Crystal structure of human fibrinogen. Biochemistry 48:3877–3886. doi:10.1021/bi802205g

    Article  CAS  Google Scholar 

  75. Ryan EA, Mockros LF, Weisel JW, Lorand L (1999) Structural origins of fibrin clot rheology. Biophys J 77:2813–2826. doi:10.1016/S0006-3495(99)77113-4

    Google Scholar 

  76. Blombiick B, Carlsson K, Hessel B, Liljeborg A, Procyk R, Aslund N (1989) Native fibrin gel networks observed by 3D microscopy, permeation and turbidity. Biochim Biophys Acta 997:96–110

    Article  Google Scholar 

  77. Soon ASC, Lee CS, Barker TH (2011) Modulation of fibrin matrix properties via knob:hole affinity interactions using peptide-PEG conjugates. Biomaterials 32:4406–4414. doi:10.1016/j.biomaterials.2011.02.050

    Article  CAS  Google Scholar 

  78. Stabenfeldt SE, Gourley M, Krishnan L, Hoying JB, Barker TH (2012) Engineering fibrin polymers through engagement of alternative polymerization mechanisms. Biomaterials 33:535–544. doi:10.1016/j.biomaterials.2011.09.079

    Article  CAS  Google Scholar 

  79. Dubey N, Letourneau PC, Tranquillo RT (2001) Neuronal contact guidance in magnetically aligned fibrin gels: effect of variation in gel mechano-structural properties. Biomaterials 22:1065–1075. doi:10.1016/S0142-9612(00)00341-0

    Article  CAS  Google Scholar 

  80. Le Guehennec L, Goyenvalle E, Aguado E, Pilet P, Spaethe R, Daculsi G (2007) Influence of calcium chloride and aprotinin in the in vivo biological performance of a composite combining biphasic calcium phosphate granules and fibrin sealant. J Mater Sci Mater Med 18:1489–1495. doi:10.1007/s10856-006-0086-x

    Article  CAS  Google Scholar 

  81. Davis HE, Miller SL, Case EM, Leach JK (2011) Supplementation of fibrin gels with sodium chloride enhances physical properties and ensuing osteogenic response. Acta Biomater 7:691–699. doi:10.1016/j.actbio.2010.09.007

    Article  CAS  Google Scholar 

  82. Wang M-C, Pins GD, Silver FH (1995) Preparation of fibrin glue: the effects of calcium chloride and sodium chloride. Mater Sci Eng C 3:131–135. doi:10.1016/0928-4931(95)00116-6

    Google Scholar 

  83. Eyrich D, Brandl F, Appel B, Wiese H, Maier G, Wenzel M, Staudenmaier R, Goepferich A, Blunk T (2007) Long-term stable fibrin gels for cartilage engineering. Biomaterials 28:55–65. doi:10.1016/j.biomaterials.2006.08.027

    Article  CAS  Google Scholar 

  84. Brown AEX, Litvinov RI, Discher DE, Purohit PK, Weisel JW (2009) Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325:741–744. doi:10.1126/science.1172484

    Article  CAS  Google Scholar 

  85. Kang H, Wen Q, Janmey PA, Tang JX, Conti E, MacKintosh FC (2009) Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels. J Phys Chem B 113:3799–3805. doi:10.1021/jp807749f

    Google Scholar 

  86. Matsumoto T, Sasaki JI, Alsberg E, Egusa H, Yatani H, Sohmura T (2007) Three-dimensional cell and tissue patterning in a strained fibrin gel system. PLoS ONE 2:1–6. doi:10.1371/journal.pone.0001211

    Article  CAS  Google Scholar 

  87. Alsberg E, Feinstein E, Joy MP, Prentiss M, Ingber DE (2006) Magnetically-guided self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering. Tissue Eng 12(11):3247–3256

    Article  CAS  Google Scholar 

  88. Cui X, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227. doi:10.1016/j.biomaterials.2009.07.056

    Article  CAS  Google Scholar 

  89. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580–3588. doi:10.1016/j.biomaterials.2006.01.048

  90. Breen A, O’Brien T, Pandit A (2009) Fibrin as a delivery system for therapeutic drugs and biomolecules. Tissue Eng Part B Rev 15:201–214. doi:10.1089/ten.teb.2008.0527

    Article  CAS  Google Scholar 

  91. Whelan D, Caplice NM, Clover AJP (2014) Fibrin as a delivery system in wound healing tissue engineering applications. J Control Release 196:1–8. doi:10.1016/j.jconrel.2014.09.023

    Google Scholar 

  92. Joo JY, Amin ML, Rajangam T, An SS a. (2015) Fibrinogen as a promising material for various biomedical applications. Mol Cell Toxicol 11:1–9. doi:10.1007/s13273-015-0001-y

    Google Scholar 

  93. Falvo MR, Gorkun OV, Lord ST (2010) The molecular origins of the mechanical properties of fibrin. Biophys Chem 152:15–20. doi:10.1016/j.bpc.2010.08.009

    Article  CAS  Google Scholar 

  94. De la Puente P, Ludeña D (2014) Cell culture in autologous fibrin scaffolds for applications in tissue engineering. Exp Cell Res 322:1–11. doi:10.1016/j.yexcr.2013.12.017

    Article  CAS  Google Scholar 

  95. Ceccarelli J, Putnam AJ (2014) Sculpting the blank slate: how fibrin’s support of vascularization can inspire biomaterial design. Acta Biomater 10:1515–1523. doi:10.1016/j.actbio.2013.07.043

    Article  CAS  Google Scholar 

  96. Morin KT, Tranquillo RT (2013) In vitro models of angiogenesis and vasculogenesis in fibrin gel. Exp Cell Res 319:2409–2417. doi:10.1016/j.yexcr.2013.06.006

    Article  CAS  Google Scholar 

  97. Bjork JW, Johnson SL, Tranquillo RT (2011) Ruthenium-catalyzed photo cross-linking of fibrin-based engineered tissue. Biomaterials 32:2479–2488. doi:10.1016/j.biomaterials.2010.12.010

    Article  CAS  Google Scholar 

  98. Syedain ZH, Bjork J, Sando L, Tranquillo RT (2009) Controlled compaction with ruthenium-catalyzed photochemical cross-linking of fibrin-based engineered connective tissue. Biomaterials 30:6695–6701. doi:10.1016/j.biomaterials.2009.08.039

    Article  CAS  Google Scholar 

  99. Schense JC, Hubbell JA (1999) Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug Chem 10:75–81. doi:10.1021/bc9800769

    Article  CAS  Google Scholar 

  100. Schense JC, Bloch J, Aebischer P, Hubbell JA (2000) Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nat Biotechnol 18:415–419. doi:10.1038/74473

    Article  CAS  Google Scholar 

  101. Martino MM, Tortelli F, Mochizuki M, Traub S, Ben-David D, Kuhn GA, Müller R, Livne E, Eming SA, Hubbell JA (2011) Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med 3:100ra89. doi:10.1126/scitranslmed.3002614

    Google Scholar 

  102. Sacchi V, Mittermayr R, Hartinger J, Martino MM, Lorentz KM, Wolbank S, Hofmann A, Largo RA, Marschall JS, Groppa E, Gianni-Barrera R, Ehrbar M, Hubbell J a, Redl H, Banfi A (2014) Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164. Proc Natl Acad Sci USA 111:6952–6957. doi:10.1073/pnas.1404605111

    Google Scholar 

  103. Sakiyama-Elbert SE (2001) Development of growth factor fusion proteins for cell-triggered drug delivery. FASEB J 2:363–374. doi:10.1096/fj.00-0564fje

    Google Scholar 

  104. Zisch AH, Schenk U, Schense JC, Sakiyama-Elbert SE, Hubbell JA (2001) Covalently conjugated VEGF-fibrin matrices for endothelialization. J Control Release 72:101–113. doi:10.1016/S0168-3659(01)00266-8

    Article  CAS  Google Scholar 

  105. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007. doi:10.1016/j.progpolymsci.2007.05.013

    Article  CAS  Google Scholar 

  106. Fu C, Shao Z, Fritz V (2009) Animal silks: their structures, properties and artificial production. Chem Commun (Camb) 6515–6529. doi:10.1039/b911049f

  107. Heim M, Keerl D, Scheibel T (2009) Spider silk: from soluble protein to extraordinary fiber. Angew Chemie Int Ed 48:3584–3596. doi:10.1002/anie.200803341

    Article  CAS  Google Scholar 

  108. Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL (2008) Spider silks and their applications. Trends Biotechnol 26:244–251. doi:10.1016/j.tibtech.2008.02.006

    Article  CAS  Google Scholar 

  109. Tokareva O, Jacobsen M, Buehler M, Wong J, Kaplan DL (2014) Structure-function-property-design interplay in biopolymers: spider silk. Acta Biomater 10:1612–1626. doi:10.1016/j.actbio.2013.08.020

    Article  CAS  Google Scholar 

  110. Yucel T, Lovett ML, Kaplan DL (2014) Silk-based biomaterials for sustained drug delivery. J Control Release 190:381–397. doi:10.1016/j.jconrel.2014.05.059

    Article  CAS  Google Scholar 

  111. Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457–470. doi:10.1016/j.addr.2012.09.043

    Article  CAS  Google Scholar 

  112. Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL (2006) Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27:6064–6082. doi:10.1016/j.biomaterials.2006.07.008

    Article  CAS  Google Scholar 

  113. Meinel L, Kaplan DL (2012) Silk constructs for delivery of musculoskeletal therapeutics. Adv Drug Deliv Rev 64:1111–1122. doi:10.1016/j.addr.2012.03.016

    Article  CAS  Google Scholar 

  114. Seib FP, Kaplan DL (2013) Silk for drug delivery applications: opportunities and challenges. Isr J Chem 53:756–766. doi:10.1002/ijch.201300083

    CAS  Google Scholar 

  115. Wenk E, Merkle HP, Meinel L (2011) Silk fibroin as a vehicle for drug delivery applications. J Control Release 150:128–141. doi:10.1016/j.jconrel.2010.11.007

    Article  CAS  Google Scholar 

  116. Hota MK, Bera MK, Kundu B, Kundu SC, Maiti CK (2012) A natural silk fibroin protein-based transparent bio-memristor. Adv Funct Mater 22:4493–4499. doi:10.1002/adfm.201200073

    Article  CAS  Google Scholar 

  117. Omenetto FG, Kaplan DL (2008) A new route for silk. Nat Photonics 2:641–643. doi:10.1038/nphoton.2008.207

    Article  CAS  Google Scholar 

  118. Tao H, Kaplan DL, Omenetto FG (2012) Silk materials—a road to sustainable high technology. Adv Mater 24:2824–2837. doi:10.1002/adma.201104477

    Article  CAS  Google Scholar 

  119. Kang G, Nahm J, Park J, Moon J, Cho C, Yeo J (2000) Effects of poloxamer on the gelation of silk fibroin. Macromol Rapid Commun 21:788–791. doi:10.1002/1521-3927(20000701)21:11<788::AID-MARC788>3.0.CO;2-X

    Google Scholar 

  120. Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5:786–792. doi:10.1021/bm0345460

    Article  CAS  Google Scholar 

  121. Ayub Haider Z, Arai M, Hirabayashi K (1993) Mechanism of the gelation of fibroin solution. Biosci Biotechnol Biochem 57:1910–1912. doi:10.1271/bbb.57.1910

    Article  Google Scholar 

  122. Hanawa T, Watanabe A, Tsuchiya T, Ikoma R, Hidaka M, Sugihara M (1995) New oral dosage form for elderly patients: preparation and characterization of silk fibroin gel. Chem Pharm Bull (Tokyo) 43:284–288. doi:10.1248/cpb.37.3229

    Article  CAS  Google Scholar 

  123. Motta A, Migliaresi C, Faccioni F, Torricelli P, Fini M, Giardino R (2004) Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies. J Biomater Sci Polym Ed 15:851–864. doi:10.1163/1568562041271075

    Article  CAS  Google Scholar 

  124. Yoo MK, Kweon HY, Lee KG, Lee HC, Cho CS (2004) Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poloxamer macromer. Int J Biol Macromol 34:263–270. doi:10.1016/j.ijbiomac.2004.06.002

    Article  CAS  Google Scholar 

  125. Fini M, Motta A, Torricelli P, Giavaresi G, Nicoli Aldini N, Tschon M, Giardino R, Migliaresi C (2005) The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials 26:3527–3536. doi:10.1016/j.biomaterials.2004.09.040

    Article  CAS  Google Scholar 

  126. Yucel T, Cebe P, Kaplan DL (2009) Vortex-induced injectable silk fibroin hydrogels. Biophys J 97:2044–2050. doi:10.1016/j.bpj.2009.07.028

    Article  CAS  Google Scholar 

  127. Wang X, Kluge JA, Leisk GG, Kaplan DL (2008) Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29:1054–1064. doi:10.1016/j.biomaterials.2007.11.003

    Article  CAS  Google Scholar 

  128. Numata K, Katashima T, Sakai T (2011) State of water, molecular structure, and cytotoxicity of silk hydrogels. Biomacromolecules 12:2137–2144. doi:10.1021/bm200221u

    Article  CAS  Google Scholar 

  129. Kojic N, Panzer MJ, Leisk GG, Raja WK, Kojic M, Kaplan DL (2012) Ion electrodiffusion governs silk electrogelation. Soft Matter 8:6897. doi:10.1039/c2sm25783a

    Article  CAS  Google Scholar 

  130. Leisk GG, Lo TJ, Yucel T, Lu Q, Kaplan DL (2010) Electrogelation for protein adhesives. Adv Mater 22:711–715. doi:10.1002/adma.200902643

    Article  CAS  Google Scholar 

  131. Lin Y, Xia X, Shang K, Elia R, Huang W, Cebe P, Leisk G, Omenetto F, Kaplan DL (2013) Tuning chemical and physical cross-links in silk electrogels for morphological analysis and mechanical reinforcement. Biomacromolecules 14:2629–2635. doi:10.1021/bm4004892

    Article  CAS  Google Scholar 

  132. Lu Q, Huang Y, Li M, Zuo B, Lu S, Wang J, Zhu H, Kaplan DL (2011) Silk fibroin electrogelation mechanisms. Acta Biomater 7:2394–2400. doi:10.1016/j.actbio.2011.02.032

    Article  CAS  Google Scholar 

  133. Yucel T, Kojic N, Leisk GG, Lo TJ, Kaplan DL (2010) Non-equilibrium silk fibroin adhesives. J Struct Biol 170:406–412. doi:10.1016/j.jsb.2009.12.012

    Article  CAS  Google Scholar 

  134. Sun L, Parker ST, Syoji D, Wang X, Lewis J a, Kaplan DL (2012) Direct-write assembly of 3D silk/hydroxyapatite scaffolds for bone co-cultures. Adv Healthc Mater 1:729–35. doi:10.1002/adhm.201200057

    Google Scholar 

  135. Almine JF, Bax DV, Mithieux SM, Nivison-Smith L, Rnjak J, Waterhouse A, Wise SG, Weiss AS (2010) Elastin-based materials. Chem Soc Rev 39:3371–3379. doi:10.1039/b919452p

    Article  CAS  Google Scholar 

  136. Daamen WF, Veerkamp JH, van Hest JCM, van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28:4378–4398. doi:10.1016/j.biomaterials.2007.06.025

    Article  CAS  Google Scholar 

  137. Wise SG, Mithieux SM, Weiss AS (2009) Engineered tropoelastin and elastin-based biomaterials. Adv Protein Chem Struct Biol 78:1–24. doi:10.1016/S1876-1623(08)78001-5

    Article  CAS  Google Scholar 

  138. Annabi N, Mithieux SM, Boughton EA, Ruys AJ, Weiss AS, Dehghani F (2009) Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro. Biomaterials 30:4550–4557. doi:10.1016/j.biomaterials.2009.05.014

    Article  CAS  Google Scholar 

  139. Jiankang H, Dichen L, Yaxiong L, Bo Y, Hanxiang Z, Qin L, Bingheng L, Yi L (2009) Preparation of chitosan-gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Acta Biomater 5:453–461. doi:10.1016/j.actbio.2008.07.002

    Article  CAS  Google Scholar 

  140. Leach JB, Wolinsky JB, Stone PJ, Wong JY (2005) Crosslinked alpha-elastin biomaterials: Towards a processable elastin mimetic scaffold. Acta Biomater 1:155–164. doi:10.1016/j.actbio.2004.12.001

    Article  Google Scholar 

  141. Reichl S (2009) Films based on human hair keratin as substrates for cell culture and tissue engineering. Biomaterials 30:6854–6866. doi:10.1016/j.biomaterials.2009.08.051

    Article  CAS  Google Scholar 

  142. Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials (Basel) 3:999–1014. doi:10.3390/ma3020999

    Article  Google Scholar 

  143. Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, Maltais L, Omary MB, Parry DAD, Rogers MA, Wright MW (2006) New consensus nomenclature for mammalian keratins. J Cell Biol 174:169–174. doi:10.1083/jcb.200603161

    Article  CAS  Google Scholar 

  144. Lee H, Noh K, Lee SC, Kwon I, Han D, Lee I, Hwang Y (2014) Human hair keratin and its-based biomaterials for biomedical applications. Tissue Eng Regen Med 11:255–265. doi:10.1007/s13770-014-0029-4

    Article  CAS  Google Scholar 

  145. Hill PS, Apel PJ, Barnwell J, Smith T, Koman LA, Atala A, Van Dyke M (2011) Repair of peripheral nerve defects in rabbits using keratin hydrogel scaffolds. Tissue Eng Part A 17:1499–1505. doi:10.1089/ten.tea.2010.0184

    Article  CAS  Google Scholar 

  146. Pace LA, Plate JF, Smith TL, Van Dyke ME (2013) The effect of human hair keratin hydrogel on early cellular response to sciatic nerve injury in a rat model. Biomaterials 34:5907–5914. doi:10.1016/j.biomaterials.2013.04.024

    Article  CAS  Google Scholar 

  147. Sierpinski P, Garrett J, Ma J, Apel P, Klorig D, Smith T, Koman LA, Atala A, Van Dyke M (2008) The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials 29:118–128. doi:10.1016/j.biomaterials.2007.08.023

    Article  CAS  Google Scholar 

  148. Wang S, Taraballi F, Tan LP, Ng KW (2012) Human keratin hydrogels support fibroblast attachment and proliferation in vitro. Cell Tissue Res 347:795–802. doi:10.1007/s00441-011-1295-2

    Article  CAS  Google Scholar 

  149. Badylak SF, Taylor D, Uygun K (2010) Whole organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:110301095218061. doi:10.1146/annurev-bioeng-071910-124743

    Google Scholar 

  150. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219. doi:10.1126/science.1176009

    Article  CAS  Google Scholar 

  151. Soto-Gutierrez A, Zhang L, Medberry C, Fukumitsu K, Faulk D, Jiang H, Reing J, Gramignoli R, Komori J, Ross M, Nagaya M, Lagasse E, Stolz D, Strom SC, Fox IJ, Badylak SF (2011) A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods 17:677–686. doi:10.1089/ten.tec.2010.0698

    Article  CAS  Google Scholar 

  152. Choi JS, Yang HJ, Kim BS, Kim JD, Kim JY, Yoo B, Park K, Lee HY, Cho YW (2009) Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. J Control Release 139:2–7. doi:10.1016/j.jconrel.2009.05.034

    Article  CAS  Google Scholar 

  153. Pati F, Jang J, Ha D, Won Kim S, Rhie J, Shim J, Kim D, Cho D (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935. doi:10.1038/ncomms4935

    Article  CAS  Google Scholar 

  154. Johnson TD, Lin SY, Christman KL (2011) Tailoring material properties of a nanofibrous extracellular matrix derived hydrogel. Nanotechnology 22:494015. doi:10.1088/0957-4484/22/49/494015

    Article  CAS  Google Scholar 

  155. Singelyn JM, DeQuach JA, Seif-Naraghi SB, Littlefield RB, Schup-Magoffin PJ, Christman KL (2009) Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30:5409–5416. doi:10.1016/j.biomaterials.2009.06.045

    Google Scholar 

  156. Enat R, Jefferson DM, Ruiz-Opazo N, Gatmaitan Z, Leinwand LA, Reid LM (1984) Hepatocyte proliferation in vitro: its dependence on the use of serum-free hormonally defined medium and substrata of extracellular matrix. Proc Natl Acad Sci USA 81:1411–1415. doi:10.1073/pnas.81.5.1411

    Article  CAS  Google Scholar 

  157. Skardal A, Smith L, Bharadwaj S, Atala A, Soker S, Zhang Y (2012) Tissue specific synthetic ECM hydrogels for 3-D in vitro maintenance of hepatocyte function. Biomaterials 33:4565–4575. doi:10.1016/j.biomaterials.2012.03.034

    Article  CAS  Google Scholar 

  158. Wolf MT, Daly KA, Brennan-Pierce EP, Johnson SA, Carruthers CA, D’Amore A, Nagarkar SP, Velankar SS, Badylak SF (2012) A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials 33:7028–7038. doi:10.1016/j.biomaterials.2012.06.051

    Google Scholar 

  159. Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–21. doi:10.1038/nm1684

    Google Scholar 

  160. DeQuach JA, Mezzano V, Miglani A, Lange S, Keller GM, Sheikh F, Christman KL (2010) Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One 5:e13039. doi:10.1371/journal.pone.0013039

    Google Scholar 

  161. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37:790–802. doi:10.2144/3705A0790

    CAS  Google Scholar 

  162. Lai JY, Li YT (2010) Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers. Biomacromolecules 11:1387–1397. doi:10.1021/bm100213f

    Article  CAS  Google Scholar 

  163. Liu Y, Griffith M, Watsky MA, Forrester JV, Kuffová L, Grant D, Merrett K, Carlsson DJ (2006) Properties of porcine and recombinant human collagen matrices for optically clear tissue engineering applications. Biomacromolecules 7:1819–1828. doi:10.1021/bm060160o

    Google Scholar 

  164. Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, Scaiano JC, Watsky MA, Shinozaki N, Lagali N, Munger R, Li F (2008) Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 29:1147–1158. doi:10.1016/j.biomaterials.2007.11.011

    Google Scholar 

  165. Liang Y, Jeong J, DeVolder RJ, Cha C, Wang F, Tong YW, Kong H (2011) A cell-instructive hydrogel to regulate malignancy of 3D tumor spheroids with matrix rigidity. Biomaterials 32:9308–9315. doi:10.1016/j.biomaterials.2011.08.045

    Article  CAS  Google Scholar 

  166. Rafat M, Li F, Fagerholm P, Lagali NS, Watsky MA, Munger R, Matsuura T, Griffith M (2008) PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials 29:3960–3972. doi:10.1016/j.biomaterials.2008.06.017

    Google Scholar 

  167. Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN (2015) A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater 27:1607–1614. doi:10.1002/adma.201405076

    Article  CAS  Google Scholar 

  168. Singh RK, Seliktar D, Putnam AJ (2013) Capillary morphogenesis in PEG-collagen hydrogels. Biomaterials 34:9331–9340. doi:10.1016/j.biomaterials.2013.08.016

    Article  CAS  Google Scholar 

  169. Hwang YJ, Larsen J, Krasieva TB, Lyubovitsky JG (2011) Effect of genipin crosslinking on the optical spectral properties and structures of collagen hydrogels. ACS Appl Mater Interfaces 3:2579–2584. doi:10.1021/am200416h

    Article  CAS  Google Scholar 

  170. MacAya D, Ng KK, Spector M (2011) Injectable collagen-genipin gel for the treatment of spinal cord injury: In vitro studies. Adv Funct Mater 21:4788–4797. doi:10.1002/adfm.201101720

    Article  CAS  Google Scholar 

  171. Kirchmajer DM, Watson CA, Ranson M, Panhuis M in Het (2013) Gelapin, a degradable genipin cross-linked gelatin hydrogel. RSC Adv 3:1073. doi:10.1039/c2ra22859a

    Google Scholar 

  172. Schek RM, Michalek AJ, Iatridis JC (2011) Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair. Eur Cells Mater 21:373–383. doi:10.1016/j.biotechadv.2011.08.021.Secreted

    Article  CAS  Google Scholar 

  173. Silva SS, Motta A, Rodrigues MT, Pinheiro AFM, Gomes ME, Mano JF, Reis RL, Migliaresi C (2008) Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules 9:2764–2774. doi:10.1021/bm800874q

    Article  CAS  Google Scholar 

  174. Xiao W, Liu W, Sun J, Dan X, Wei D, Fan H (2012) Ultrasonication and genipin cross-linking to prepare novel silk fibroin-gelatin composite hydrogel. J Bioact Compat Polym 27:327–341. doi:10.1177/0883911512448692

    Article  Google Scholar 

  175. Liang HC, Chang WH, Liang HF, Lee MH, Sung HW (2004) Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide. J Appl Polym Sci 91:4017–4026. doi:10.1002/app.13563

    Article  CAS  Google Scholar 

  176. Sung HW, Huang DM, Chang WH, Huang RN, Hsu JC (1999) Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study. J Biomed Mater Res 46:520–530. doi:10.1002/(SICI)1097-4636(19990915)46:4<520::AID-JBM10>3.0.CO;2-9

    Google Scholar 

  177. McDermott MK, Chen T, Williams CM, Markley KM, Payne GF (2004) Mechanical properties of biomimetic tissue adhesive based on the microbial transglutaminase-catalyzed crosslinking of gelatin. Biomacromolecules 5:1270–1279. doi:10.1021/bm034529a

    Article  CAS  Google Scholar 

  178. Yung CW, Wu LQ, Tullman JA, Payne GF, Bentley WE, Barbari TA (2007) Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J Biomed Mater Res—Part A 83:1039–1046. doi:10.1002/jbm.a.31431

    Article  CAS  Google Scholar 

  179. Hermanson GT (2013). Bioconjugate techniques, 3rd edn. Academic press, Elsevier. ISBN: 978-0-12-382239-0

    Google Scholar 

  180. Kushibiki T, Tomoshige R, Fukunaka Y, Kakemi M, Tabata Y (2003) In vivo release and gene expression of plasmid DNA by hydrogels of gelatin with different cationization extents. J Control Release 90:207–216. doi:10.1016/S0168-3659(03)00197-4

    Article  CAS  Google Scholar 

  181. Santoro M, Tatara AM, Mikos AG (2014) Gelatin carriers for drug and cell delivery in tissue engineering. J Control Release 190:210–218. doi:10.1016/j.jconrel.2014.04.014

    Article  CAS  Google Scholar 

  182. Nezhadi SH, Choong PFM, Lotfipour F, Dass CR (2009) Gelatin-based delivery systems for cancer gene therapy. J Drug Target 17:731–738. doi:10.3109/10611860903096540

    Article  CAS  Google Scholar 

  183. Sakai S, Hirose K, Taguchi K, Ogushi Y, Kawakami K (2009) An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials 30:3371–3377. doi:10.1016/j.biomaterials.2009.03.030

    Article  CAS  Google Scholar 

  184. Wang LS, Boulaire J, Chan PPY, Chung JE, Kurisawa M (2010) The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials 31:8608–8616. doi:10.1016/j.biomaterials.2010.07.075

    Article  CAS  Google Scholar 

  185. Wang LS, Chung JE, Pui-Yik Chan P, Kurisawa M (2010) Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 31:1148–1157. doi:10.1016/j.biomaterials.2009.10.042

    Article  CAS  Google Scholar 

  186. Chen YC, Lin RZ, Qi H, Yang Y, Bae H, Melero-Martin JM, Khademhosseini A (2012) Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 22:2027–2039. doi:10.1002/adfm.201101662

    Article  CAS  Google Scholar 

  187. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544. doi:10.1016/j.biomaterials.2010.03.064

    Article  CAS  Google Scholar 

  188. Nikkhah M, Eshak N, Zorlutuna P, Annabi N, Castello M, Kim K, Dolatshahi-Pirouz A, Edalat F, Bae H, Yang Y, Khademhosseini A (2012) Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 33:9009–9018. doi:10.1016/j.biomaterials.2012.08.068

    Article  CAS  Google Scholar 

  189. Hu X, Ma L, Wang C, Gao C (2009) Gelatin hydrogel prepared by photo-initiated polymerization and loaded with TGF-beta1 for cartilage tissue engineering. Macromol Biosci 9:1194–1201. doi:10.1002/mabi.200900275

    Article  CAS  Google Scholar 

  190. Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P (2014) The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62. doi:10.1016/j.biomaterials.2013.09.078

    Article  CAS  Google Scholar 

  191. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130. doi:10.1002/adma.201305506

    Google Scholar 

  192. Fu Y, Xu K, Zheng X, Giacomin AJ, Mix AW, Kao WJ (2012) 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels. Biomaterials 33:48–58. doi:10.1016/j.biomaterials.2011.09.031

    Article  CAS  Google Scholar 

  193. Phelps EA, Enemchukwu NO, Fiore VF, Sy JC, Murthy N, Sulchek TA, Barker TH, García AJ (2012) Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv Mater 24:64–70. doi:10.1002/adma.201103574

    Google Scholar 

  194. Vanderhooft JL, Alcoutlabi M, Magda JJ, Prestwich GD (2009) Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering. Macromol Biosci 9:20–28. doi:10.1002/mabi.200800141

    Article  CAS  Google Scholar 

  195. Nimmo CM, Shoichet MS (2011) Regenerative biomaterials that “click”: Simple, aqueous-based protocols for hydrogel synthesis, surface immobilization, and 3D patterning. Bioconjug Chem 22:2199–2209. doi:10.1021/bc200281k

    Article  CAS  Google Scholar 

  196. Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z (2014) Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 35:4969–4985. doi:10.1016/j.biomaterials.2014.03.001

    Article  CAS  Google Scholar 

  197. Zheng M, Zheng L, Zhang P, Li J, Zhang Y (2015) Development of bioorthogonal reactions and their applications in bioconjugation. Molecules 20:3190–3205. doi:10.3390/molecules20023190

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramille N. Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rutz, A.L., Shah, R.N. (2016). Protein-Based Hydrogels. In: Kalia, S. (eds) Polymeric Hydrogels as Smart Biomaterials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-25322-0_4

Download citation

Publish with us

Policies and ethics