Skip to main content

Polysaccharide-Based Hydrogels as Biomaterials

  • Chapter
  • First Online:
Polymeric Hydrogels as Smart Biomaterials

Abstract

The ever-increasing interest to utilize renewable polysaccharide-based hydrogels as biomaterials has created renewed interest in many disciplines including biomedicine, bioengineering, pharmacy, chemistry, and materials science. The volume of literature published in this area is quite extensive as the diversity of these materials seeks novel applications. The polysaccharide-based hydrogels as smart biomaterials have attracted much interest in drug delivery, bioengineering, and electronics domain. Recent advances in micro- and nanobiotechnology have led to renewed interest for targeting drugs, genes, and other biotherapeutics like proteins, small interfering RNA (siRNA), and peptides. These applications have progressed exponentially due to their similarities with soft tissue body components as well as being responsive to external stimuli like temperature, pH, electric and magnetic fields. This chapter covers recent developments and advances in hydrogels derived from natural polysaccharides as biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

AG:

Agarose

ATDC5:

Chondrocytic cell line

Az-chitosan:

4-azidobenzamide grafted chitosan

BMP-2:

Bone morphogenetic protein-2

bMSCs:

Bovine mesenchymal stem cells

BMSCs:

Bone marrow stem cells

BSA:

Bovine serum albumin

CG:

Carrageenan

CS:

Chitosan

CT1:

Connexin-43 carboxyl-terminus mimetic peptide

DD:

Degree of deacetylation

DMF:

Dimethyl formamide

DMSO:

Dimethyl sulphoxide

DS:

Dextran sulfate

ECM:

Extracellular matrix

EE:

Entrapment efficiency

EGFP:

Enhanced green fluorescent protein

full-IPN:

Full-interpolymeric network

GA:

Glutaraldehyde

GAGs:

Mammalian glycosaminoglycans

GAGs:

Glycosaminoglycans

G-CSF:

Granulocyte colony-stimulating factor

GFP:

Green fluorescent protein

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

GRAS:

Generally recognized as safe

HA:

Hyaluronic acid

hASCs:

Human adipose-derived stem cells

hNCs:

Human nasal chondrocytes

HP:

Heparin

k-carrageenan:

Kappa-Carrageenan

MW:

Molecular weight

MYO:

Î’-galactosidase, myoglobin

NaAlg:

Sodium alginate

NPs:

Nanoparticles

PEG:

Polyethylene glycol

PLGA:

Poly(lactic-co-glycolic acid) copolymer

rhGH:

Recombinant human growth hormone

semi-IPN:

Semi-interpolymeric network

SLN:

Solid lipid nanoparticles

US-FDA:

United States Food and Drug Administration

VBL:

Visible blue light

References

  1. Rudzinski WE, Aminabhavi TM (2010) Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm 399:1–11

    Article  CAS  Google Scholar 

  2. Pasqui D, Cagna MD, Barbucci R (2012) Polysaccharide-based hydrogels: the key role of water in affecting mechanical properties. Polymer 4:1517–1534

    Article  CAS  Google Scholar 

  3. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly(d, l-lactide-co-glycolide) and its derivatives. J Control Release 125:193–209

    Article  CAS  Google Scholar 

  4. Robert L, Robert AM, Renard G (2010) Biological effects of hyaluronan in connective tissues, eye, skin, venous wall role in aging. Pathol Biol 82:187–198

    Article  CAS  Google Scholar 

  5. Cowman MK, Matsuoka S (2010) Experimental approaches to hyaluronan structures. Carbohydr Res 340:791–809

    Article  CAS  Google Scholar 

  6. Luo Y, Wang S, Shen M, Qi R, Fang Y, Guo R, Cai H, Cao X, Tomás H, Zhu M, Shi X (2013) Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr Polym 91(1):419–427

    Article  CAS  Google Scholar 

  7. Hoo SP, Loh QL, Yue Z, Fu J, Tan TTY, Choong C, Chan PPY (2013) Preparation of a soft and interconnected macroporous hydroxypropyl cellulose methacrylate scaffold for adipose tissue engineering. J Mater Chem. B 1(24):3107–3117

    Article  CAS  Google Scholar 

  8. Ramli NA, Wong TW (2011) Sodium carboxymethylcellulose scaffolds and their physicochemical effects on partial thickness wound healing. Int J Pharm 403:73–82

    Article  CAS  Google Scholar 

  9. Hirano S, Zhang M, Chung BS, Kim SK (2000) The N-acylation of chitosan fibre and the N-deacetylation of chitin fibre and chitin cellulose fibre at a solid state. Carbohydr Polym 41:175–179

    Article  CAS  Google Scholar 

  10. Hirano S, Nagamura K, Zhang M, Kim SK, Chung BG, Yoshikawa M, Midorikawa T (1999) Chitosan staple fibres and their chemical modification with some aldehydes. Carbohydr Polym 38:293–298

    Article  CAS  Google Scholar 

  11. Yu J, Du KT, Fang Q (2010) The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31:7012–7020

    Article  CAS  Google Scholar 

  12. Man Y, Wang P, Guo Y, Xiang L, Yang Y, Qu Y, Gong P, Deng L (2012) Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres. Biomaterials 33:8802–8811

    Article  CAS  Google Scholar 

  13. Xu R, Feng X, Xie X, Xu H, Wu D, Xu L (2011) Grafted starch-encapsulated hemoglobin (GSEHb) artificial red blood cells substitutes. Biomacromolecules 12(5):1935

    Article  Google Scholar 

  14. Nishinari K, Takahashi R (2003) Interaction in polysaccharide solutions and gels. Curr Opin Colloid Interface Sci 8:396–400

    Article  CAS  Google Scholar 

  15. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  16. Kim JI, Lee BS, Chun C, Cho JK, Kim SY, Song SC (2012) Long-term theranostic hydrogel system for solid tumors. Biomaterials 33(7):2251–2259

    Article  CAS  Google Scholar 

  17. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  CAS  Google Scholar 

  18. Rudzinski WE, Dave AM, Viashnav UH, Kumbar SG, Kulkarni AR, Aminabhavi TM (2002) Hydrogels as controlled release devices in agriculture. Des Monomers Polym 5:39–65

    Article  CAS  Google Scholar 

  19. Ganguly K, Aminabhavi TM, Kulkarni AR (2011) Colon targeting of 5-fluorouracil using polyethylene glycol crosslinked chitosan microspheres enteric coated with cellulose acetate phthalate. Ind Eng Chem Res 50(21):11797–11807

    Article  CAS  Google Scholar 

  20. Kashyap N, Kumar N, Ravi Kumar MNV (2005) Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst 22(2):107–150

    Article  CAS  Google Scholar 

  21. Hacker MC, Mikos AG (2011) Synthetic polymers, principles of regenerative medicine, 2nd edn. Academic press, San Diego

    Google Scholar 

  22. Zhao W, Jin X, Cong Y, Liu Y, Fu J (2013) Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 88(3):327–339

    Article  CAS  Google Scholar 

  23. Takashi L, Hatsumi T, Makoto M, Takashi I, Takehiko G, Shuji S (2007) Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci 104(2):842

    Article  CAS  Google Scholar 

  24. Yang L, Chu JS, Fix JA (2002) Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 235:1–15

    Article  CAS  Google Scholar 

  25. Maolin Z, Jun L, Min Y, Hongfei H (2000) The swelling behaviour of radiation prepared semi-interpenetrating polymer networks composed of poly-NIPAAm and hydrophilic polymers. Radiat Phys Chem 58:397–400

    Article  Google Scholar 

  26. Jinsub S, Paul VB, Wonmok L (2010) Fast response photonic crystal pH sensor based on templated photopolymerized hydrogel inverse opal. Sens Actuat B: Chem 150(1):183–190

    Article  CAS  Google Scholar 

  27. Ahmed EM (2013) Hydrogel: preparation, characterization and applications. J Adv Res 6(2):105–121

    Article  CAS  Google Scholar 

  28. Kumar A, Sahoo B, Montpetit A, Behera S, Lockey R, Mohapatra S (2007) Development of hyaluronic acid-Fe2O3 hybrid magnetic nanoparticles for targeted delivery of peptides. Nanomed NBM 3:132–137

    Article  CAS  Google Scholar 

  29. Kadokawa J (2011) Precision polysaccharide synthesis catalyzed by enzymes. Chem Rev 111:4308–4345

    Article  CAS  Google Scholar 

  30. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34

    Article  CAS  Google Scholar 

  31. Soppimath KS, Kulkarni AR, Aminabhavi TM, Rudzinski WE (2001) Microspheres as floating drug delivery systems to increase gastric retention of drugs. Drug Metab Rev 33(2):149–160

    Article  CAS  Google Scholar 

  32. Ramesh Babu V, Patel P, Mundargi RC, Rangaswamy V, Aminabhavi TM (2008) Developments in polymeric devices for oral insulin delivery. Expert Opin Drug Deliv 5:403–415

    Article  CAS  Google Scholar 

  33. Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM (2013) Polymeric hydrogels for oral insulin delivery. J Controlled Release 165:129–138

    Article  CAS  Google Scholar 

  34. Aminabhavi TM, Nadagouda MN, More UA, Joshi SD, Kulkarni VH, Noolvi MN, Kulkarni PV (2014) Controlled release of therapeutics using interpenetrating polymeric networks. Expert Opin Drug Deliv 12(4):669–688

    Article  CAS  Google Scholar 

  35. Ganguly K, Chaturvedi K, More UA, Nadagouda MN, Aminabhavi TM (2014) Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J Controlled Release 193:162–173

    Article  CAS  Google Scholar 

  36. Aminabhavi TM, Nadagouda MN, Joshi SD, More UA (2014) Guar Gum as a platform for the oral controlled release of therapeutics. Expert Opin Drug Deliv 11:753–766

    Article  CAS  Google Scholar 

  37. Bhattarai N, Ramay HR, Gunn J, Mastan FA, Zahn MJ (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Cont Release 103:609–624

    Article  CAS  Google Scholar 

  38. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8):762–798

    Article  CAS  Google Scholar 

  39. Jayakumar R, Prabaharan M, Nair S, Tokura S, Tamura H, Selvamurugan N (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progr Mater Sci 55:675–709

    Article  CAS  Google Scholar 

  40. Cheng Y, Nada AA, Valmikinathan CM, Lee P, Liang D, Yu X, Kumbar SG (2014) In situ gelling polysaccharide-based hydrogel for cell and drug delivery in tissue engineering. J Appl Polym Sci 131:39934

    Google Scholar 

  41. Sudheesh PT, Lakshmanan VK, Anilkumar TV, Ramya C, Reshmi P, Unnikrishnan AG, Nair SV, Jayakumar R (2012) Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. Appl Mater Interfaces 4:2618–2629

    Article  CAS  Google Scholar 

  42. Ebrahimi MMS, Schönherr H (2014) Enzyme-Sensing chitosan hydrogels. Langmuir 30:7842–78501

    Article  CAS  Google Scholar 

  43. Rickett TA, Amoozgar Z, Tuchek CA, Park J, Yeo Y, Shi R (2011) Rapidly photo-cross-linkable chitosan hydrogel for peripheral neurosurgeries. Biomacromolecules 12:57–65

    Article  CAS  Google Scholar 

  44. Ryu JH, Lee Y, Kong WH, Kim TG, Park TG, Lee H (2011) Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules 12:2653–2659

    Article  CAS  Google Scholar 

  45. Jiang T, Khan Y, Nair LS, Abdel-Fattah WI, Laurencin CT (2010) Functionalization of chitosan/poly (lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. J Biomed Mater Res A 93(3):1193–1208

    Google Scholar 

  46. McKay CA, Pomrenke RD, McLane JS, Schaub NJ, DeSimone EK, Ligon LA, Gilbert RJ (2014) An injectable, calcium responsive composite hydrogel for the treatment of acute spinal cord injury. Appl Mater Interfaces 6:1424–1438

    Article  CAS  Google Scholar 

  47. Choi B, Kim S, Lin B, Wu BM, Lee M (2014) Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. Appl Mater Interfaces 6:20110–20121

    Article  CAS  Google Scholar 

  48. Zhang H, Alsarra IA, Neau SH (2002) An in vitro evaluation of a chitosan containing multiparticulate system for macromolecule delivery to the colon. Int J Pharm 239:197–205

    Article  CAS  Google Scholar 

  49. Bigucci F, Luppi B, Cerchiara T, Sorrenti M, Bettinetti G, Rodriquez L, Zecchi V (2008) Chitosan/pectin polyelectrolyte complexes: Selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur J Pharm Sci 35:435–441

    Article  CAS  Google Scholar 

  50. Assaad E, Wang YJ, Zhu XX, Mateescu MA (2011) Polyelectrolyte complex of carboxymethyl starch and chitosan as drug carrier for oral administration. Carbohydr Polym 84:1399–1407

    Article  CAS  Google Scholar 

  51. Sarmento B, Ferreira DC, Jorgensen L, Van de Weert M (2007) Probing insulin’s secondary structure after entrapment into alginate/chitosan nanoparticles. Eur J Pharm Biopharm 65:10–17

    Article  CAS  Google Scholar 

  52. Du J, Dai J, Liu J, Dankovich T (2006) Novel pH-sensitive polyelectrolyte carboxymethyl konjac glucomannan-chitosan beads as drug carriers. React Funct Polym 66:1055–1061

    Article  CAS  Google Scholar 

  53. Li P, Wang Y, Zeng F, Chen L, Peng Z, Kong LX (2011) Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells. Carbohydr Res 346:801–806

    Article  CAS  Google Scholar 

  54. Thakker SP, Rokhade AP, Abbigerimeth SS, Iliger SR, Kulkarni VH, More UA, Aminabhavi TM (2014) Inter-polymer complex microspheres of chitosan and cellulose acetate phthalate for oral delivery of 5-fluorouracil. Polymer Bull 71:2113–2131

    Article  CAS  Google Scholar 

  55. Kulkarni AR, Hukkeri VI, Sung HW, Liang HF (2005) A novel method for the synthesis of the PEG-crosslinked chitosan with a pH independent swelling behaviour. Macromol Biosci 5:925–928

    Article  CAS  Google Scholar 

  56. Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung H (2004) A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 96:285–300

    Article  CAS  Google Scholar 

  57. Sharma A, Gupta A, Rath G, Goyal A, Mathur RB, Dhakate SR (2013) Electrospun composite nanofiber-based transmucosal patch for anti-diabetic drug delivery. J Mater Chem B 1(27):3410–3418

    Article  CAS  Google Scholar 

  58. Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MØ, Hovgaard MB, Schmitz A, Nyengaard JR, Basenbacher F, Kjems J (2006) RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticle system. Mol Ther 14(4):476–484

    Article  CAS  Google Scholar 

  59. Zhai X, Sun P, Luo Y, Ma C, Xu J, Liu W (2011) Guanidinylation: a simple way to fabricate cell penetrating peptide analogue-modified chitosan vector for enhanced gene delivery. J Appl Polym Sci 121:3569–3578

    Article  CAS  Google Scholar 

  60. Luo Y, Zhai X, Ma C, Sun P, Fu Z, Liu W, Xu J (2012) An inhalable β2-adrenoceptor ligand-directed guanidinylated chitosan carrier for targeted delivery of siRNA to lung. J Control Release 162:28–36

    Article  CAS  Google Scholar 

  61. Ko HF, Sfeir C, Kumta PN (2010) Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering. Philos Trans R Soc A 368:197–198

    Article  CAS  Google Scholar 

  62. Narayanan RP, Melman G, Letourneau NJ, Mendelson NL, Melman A (2012) Photodegradable iron(III) cross-linked alginate gels. Biomacromolecules 13:2465–2471

    Article  CAS  Google Scholar 

  63. Stevens MM, Qanadilo HF, Langer R, Shastri VP (2004) A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 25:887–894

    Article  CAS  Google Scholar 

  64. Popa GE, Gomes ME, Rui LR (2011) Cell delivery systems using alginate–carrageenan hydrogel beads and fibers for regenerative medicine applications. Biomacromolecules 12(11):3952–3961

    Article  CAS  Google Scholar 

  65. Balakrishnan B, Mohanty Umashankar M, Jayakrishnan PR (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342

    Article  CAS  Google Scholar 

  66. Bidarra SJ, Barrias CC, Fonseca KB, Barbosa MA, Soares RA, Granja PL (2011) Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials 32:7897–7904

    Article  CAS  Google Scholar 

  67. Wayne JS, McDowell CL, Shields KJ, Tuan RS (2005) In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue Eng 11:953–963

    Google Scholar 

  68. Ziv K, Nuhn H, Ben-Haim Y, Sasportas LS, Kempen PJ, Niedringhaus TP, Hrynyk M, Sinclair R, Barron AE, Gambhir SS (2014) A tunable silk–alginate hydrogel scaffold for stem cell culture and transplantation. Biomaterials 35(12):3736–3743

    Article  CAS  Google Scholar 

  69. Tonnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630

    Article  CAS  Google Scholar 

  70. Rabbany SY, Pastore J, Yamamoto M, Miller T, Rafii S, Aras R, Penn M (2010) Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant 19:399–408

    Article  Google Scholar 

  71. Bowey K, Swift BE, Flynn LE, Neufeld RJ (2013) Characterization of biologically active insulin-loaded alginate microparticles prepared by spray drying. Drug Dev Ind Pharm 39:457–465

    Article  CAS  Google Scholar 

  72. Suksamran T, Opanasopit P, Rojanarata T, Ngawhirunpat T, Ruktanonchai U, Supaphol P (2009) Biodegradable alginate microparticles developed by electrohydrodynamic spraying techniques for oral delivery of protein. J Microencapsulation 26:563–570

    Article  CAS  Google Scholar 

  73. Moore K, Amos J, Davis J, Gourdie R, Potts JD (2013) Characterization of polymeric microcapsules containing a low molecular weight peptide for controlled release. Microsc Microanal 19:213–226

    Article  CAS  Google Scholar 

  74. Jeon O, Powell C, Solorio LD, Krebs MD, Alsberg E (2011) Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J Control Release 154:258–266

    Article  CAS  Google Scholar 

  75. Anderson NS, Dolan TCS, Rees DA (1965) Evidence for a common structural pattern in the polysaccharide sulfates of the Rhodphyceae. Nature 205:1060–1062

    Article  CAS  Google Scholar 

  76. Vera J, Castro J, Gonzalez A, Moenne A (2011) Seaweed polysaccharides and derived oligosaccharides stimulate defence responses and protection against pathogens in plants. Mar Drugs 9:2514–2525

    Article  CAS  Google Scholar 

  77. Nunez-Santiago MC, Tecante A, Garnier C, Doublier JL (2011) Rheology and microstructure of k-carrageenan under different conformations induced by several concentrations of potassium ion. Food Hydrocoll 25:32–41

    Article  CAS  Google Scholar 

  78. Rocha PM, Santo VE, Gomes ME, Reis RL, Mano JF (2011) Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering. J Bioact Compat Polym 26(5):493–507

    Article  CAS  Google Scholar 

  79. Santo VE, Frias AM, Carida M, Cancedda R, Gomes ME, Mano JF, Reis RL (2009) Carrageenan-based hydrogels for the controlled delivery of pdgf-bb in bone tissue engineering applications. Biomacromolecules 10:1392–1401

    Article  CAS  Google Scholar 

  80. Desai PD, Dave AM, Devi S (2004) Entrapment of lipase into K-carrageenan beads and its use in hydrolysis of olive oil in biphasic system. J Mol Catal B-Enzym 31(4):143–150

    Article  CAS  Google Scholar 

  81. Sipahigil O, Dortunc B (2001) Preparation and in vitro evaluation of verapamil HCl and ibuprofen containing carrageenan beads. Int J Pharm 228(1):119–128

    Article  CAS  Google Scholar 

  82. Pereira Rui C, Scaranari M, Castagnola P, Grandizio M, Azevedo HS, Reis RL, Cancedda R (2009) Novel injectable gel (system) as a vehicle for human articular chondrocytes in cartilage tissue regeneration. J Tissue Eng Regen Med 3(2):97–106

    Article  CAS  Google Scholar 

  83. Silva TH, Alves A, Popa EG, Reys LL, Gomes ME, Sousa RA, Silva SS, Mano JF, Reis RL (2012) Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2:278–289

    Article  Google Scholar 

  84. Popa EG, Rodrigues MT, Santo VE, Goncalves AI, Reis RL, Gomes ME (2011) Magnetic-responsive hydrogels for cartilage tissue engineering. Biomacromolecules 12(11):3952–3961

    Article  CAS  Google Scholar 

  85. Mihaila SM, Gaharwar AK, Reis RL, Marques AP, Gomes ME, Khademhosseini A (2013) hotocrosslinkable kappa -carrageenan hydrogels for tissue engineering applications. Adv Healtc Mater 2:895–907

    Article  CAS  Google Scholar 

  86. Liang W, Mao X, Peng X, Tang S (2014) Effects of sulfate group in red sea-weed polysaccharides on anticoagulant activity and cytotoxicity. Carbohydr Polym 101:776–785

    Article  CAS  Google Scholar 

  87. Silva FRF, Dore CMPG, Marques CT, Nascimento MS, Benevides NMB, Rocha HAO, Leite EL (2010) Anticoagulant activity, paw edema and pleurisy induced carrageenan: action of major types of commercial carrageenans. Carbohydr Polym 79(1):6–33

    Article  CAS  Google Scholar 

  88. Yao Z, Wu H, Zhang S, Du Y (2014) Enzymatic preparation of kappa-carrageenan oligosaccharides and their anti-angiogenic activity. Carbohyder Polym 101:359–367

    Article  CAS  Google Scholar 

  89. Scarano A, Carinci F, Piattelli A (2009) Lip augmentation with new filler (agarose gel): a 3-year follow-up study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:e11–e15

    Article  Google Scholar 

  90. Sheehy EJ, Buckley CT, Kelly DJ (2011) Chondrocytes and bone marrow-derived mesenchymal stem cells undergoing chondrogenesis in agarose hydrogels of solid and channelled architectures respond differentially to dynamic culture conditions. J Tissue Eng Regen Med 5(9):747–758

    Article  CAS  Google Scholar 

  91. Cregg JM, Wiseman SL, Pietrzak-Goetze NM, Smith MR, Jaroch DB, Clupper DC, Gilbert RJ (2010) A rapid, quantitative method for assessing axonal extension on biomaterial platforms. Tissue Eng Part C: Methods 16:167–172

    Article  CAS  Google Scholar 

  92. Fernandez-Cossio S, León-Mateos A, Sampedro FG, Oreja MT (2007) Biocompatibility of agarose gel as a dermal filler: histologic evaluation of subcutaneous implants. Plast Reconstr Surg 120:1161–1169

    Article  CAS  Google Scholar 

  93. Rossi F, Chatzistavrou X, Perale G, Boccaccini AR (2012) Synthesis and degradation of agar-carbomer based hydrogels for tissue engineering applications. J Appl Polym Sci 123:398–408

    Article  CAS  Google Scholar 

  94. Suzawa Y, Funaki T, Watanabe J, Iwai S, Yura Y, Nakano T, Umakoshi Y, Akashi M (2010) Regenerative behaviour of biomineral/agarose composite gels as bone grafting materials in rat cranial defects. J Biomed Mater Res A 93:965–975

    Google Scholar 

  95. WatanabeJ Kashii M, Hirao M, Oka K, Sugamoto K, Yoshikawa H, Akashi M (2007) Quick-forming hydroxyapatite/agarose gel composites induce bone regeneration. J Biomed Mater Res A 83:845–852

    Article  CAS  Google Scholar 

  96. Varoni E, Tschon M, Palazzo B, Nitti P, Martini L, Rimondini L (2012) Agarose gel as biomaterial or scaffold for implantation surgery: characterization, histological and histomorphometric study on soft tissue response. Connect Tissue Res 53(6):548–554

    Article  CAS  Google Scholar 

  97. Cao Z, Gilbert RJ, He W (2009) Simple agarose-chitosan gel composite system for enhanced neuronal growth in three dimensions. Biomacromolecules 10:2954–2959

    Article  CAS  Google Scholar 

  98. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224

    Article  CAS  Google Scholar 

  99. Mauck RL, Soltz MA, Wang CCB et al (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122:252–260

    Article  CAS  Google Scholar 

  100. Bougault C, Paumier A, Aubert-Fouche E, Mallein-Gerin F (2009) Investigating conversion of mechanical force into biochemical signaling in three-dimensional chondrocyte cultures. Nat Protoc 4:928–938

    Article  CAS  Google Scholar 

  101. Sakai S, Hashimoto I, Kawakami K (2006) Development of alginate–agarose subsieve-size capsules for subsequent modification with a polyelectrolyte complex membrane. Biochem Eng J 30:76–81

    Article  CAS  Google Scholar 

  102. Kogan G, Soltés L, Stern R, Gemeiner P (2007) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 29:17–25

    Article  CAS  Google Scholar 

  103. Choi S, Choi W, Kim S, Lee S, Noh I, Kim C (2014) Purification and biocompatibility of fermented hyaluronic acid for its applications to biomaterials. Biomaterials Research 18(6):1–10

    Google Scholar 

  104. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23(12):41–56

    Article  CAS  Google Scholar 

  105. Choh SY, Cross D, Wang C (2011) Facile synthesis and characterization of disulfide-cross-linked hyaluronic acid hydrogels for protein delivery and cell encapsulation. Biomacromolecules 12(4):1126–1136

    Article  CAS  Google Scholar 

  106. Gojgini S, Tokatlian T, Segura T (2011) Utilizing cell-matrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels. Mol Pharm 8(5):1582–1591

    Article  CAS  Google Scholar 

  107. Yamada T, Kawasaki T (2005) Microbial synthesis of hyaluronan and chitin: new approaches. J Biosci Bioeng 99:521–528

    Article  CAS  Google Scholar 

  108. Hou S, Tian W, Xu Q, Cui F, Zhang J, Lu Q, Zhao C (2006) The enhancement of cell adherence and inducement of neurite outgrowth of dorsal root ganglia co-cultured with hyaluronic acid hydrogels modified with Nogo-66 receptor antagonist in vitro. Neuroscience 137:519–529

    Article  CAS  Google Scholar 

  109. Ozgenel GY (2003) Effects of hyaluronic acid on peripheral nerve scarring and regeneration in rats. Microsurgery 23:575–581

    Article  Google Scholar 

  110. Lin CM, Lin JW, Chen YC, Shen HH, Wei L, Yeh YS, Chiang YH, Shih R, Chiu PL, Hung KS, Yang LY, Chiu WT (2009) Hyaluronic acid inhibits the glial scar formation after brain damage with tissue loss in rats. Surg Neurol 72(Suppl. 2):S50–S54. doi:10.1016/j.wneu.2009.09.004

    Google Scholar 

  111. Guvendiren M, Burdick JA (2012) Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun 3:792

    Article  CAS  Google Scholar 

  112. Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA (2013) Three-dimensional hydrogels. Nat Mater 12:458–465

    Article  CAS  Google Scholar 

  113. Purcell BP, Elser JA, Mu KB, Margulies Burdick JA (2012) Synergistic effects of SDF-1α chemokine and hyaluronic acid release from degradable hydrogels on directing bone marrow derived cell homing to the myocardium. Biomaterials 33:7849–7857

    Article  CAS  Google Scholar 

  114. Kim IL, Khetan S, Baker BM, Chen CS, Burdick JA (2013) Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues. Biomaterials 34:5571–5580

    Article  CAS  Google Scholar 

  115. Nie T, Baldwin A, Yamaguchi N, Kiick KL (2007) Production of heparin-functionalized hydrogels for the development of responsive and controlled growth factor delivery systems. J Controlled Release 122:287–296

    Article  CAS  Google Scholar 

  116. Nagira T, Nagahata-Ishiguro M, Tsuchiya T (2007) Effects of sulfated hyaluronan on keratinocyte differentiation and Wnt and Notch gene expression. Biomaterials 28:844–850

    Article  CAS  Google Scholar 

  117. Hintze V, Moeller S, Schnabelrauch M, Bierbaum S, Viola M, Worch H, Scharnweber D (2009) Modifications of hyaluronan influence the interaction with human bone morphogenetic protein-4 (hBMP-4). Biomacromolecules 10:3290–3297

    Article  CAS  Google Scholar 

  118. Yamada T, Sawada R, Tsuchiya T (2008) The effect of sulfated hyaluronan on the morphological transformation and activity of cultured human astrocytes. Biomaterials 29:3503–3513

    Article  CAS  Google Scholar 

  119. Prestwich GD (2011) Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Controlled Release 155:193–199

    Article  CAS  Google Scholar 

  120. Girish KS, Kemparaju K (2007) The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 80(21):1921–1943

    Article  CAS  Google Scholar 

  121. Hahn SK, Oh EJ, Miyamoto H, Shimobouji T (2006) Sustained release formulation of erythropoietin using hyaluronic acid hydrogels crosslinked by michael addition. Int J Pharm 322:44–51

    Article  CAS  Google Scholar 

  122. Lee H, Park TG (2009) Photo-crosslinkable, biomimetic, and thermo-sensitive pluronic grafted hyaluronic acid copolymers for injectable delivery of chondrocytes. J Biomed Mater Res A 88:797–806

    Article  CAS  Google Scholar 

  123. Taylor C, Cheetham NWH, Walker GJ (1985) Application of high-performance liquid chromatography to a study of branching in dextrans. Carbohydr Res 137:1–12

    Article  CAS  Google Scholar 

  124. Debelder AN (1996) Medical applications of dextran and its derivatives. In: Dimitriu S (ed) Polysaccharides in medicinal applications. Marcel Dekker, New York

    Google Scholar 

  125. Kim SH, Won CY, Chu CC (2000) Dextran-maleic acid monoesters and hydrogels based thereon. WO Patent No. 2000012619

    Google Scholar 

  126. Kim SH, Won CY, Chu CC (1999) Synthesis and characterization of dextran-maleic acid based hydrogel. J Biomed Mater Res 46:160–170

    Article  CAS  Google Scholar 

  127. Yamaoka T, Tanihara M, Mikami H, Kinoshita H (2003) Temperature-responsive material and composition comprising the same. JP Patent No. 2003252936

    Google Scholar 

  128. Du YZ, Weng H, Yuan HuFQ (2010) Synthesis and antitumor activity of stearate-g-dextran micelles for intracellular doxorubicin delivery. ACS Nano 4:6894–6902

    Article  CAS  Google Scholar 

  129. Van Tomme SR, Hennink WE (2007) Biodegradable dextran hydrogels for protein delivery applications. Expert Rev Med Dev 4:147–164

    Article  Google Scholar 

  130. Lévesque SG, Shoichet MS (2007) Synthesis of enzyme-degradable, peptide-cross-linked dextran hydrogels. Bioconjug Chem 18:874–885

    Article  CAS  Google Scholar 

  131. Shu S, Zhang X, Wu Z, Wang Z, Li C (2011) Delivery of protein drugs using nanoparticles self-assembled from dextran sulfate and quaternized chitosan. J Control Release 152:e170–e172

    Article  CAS  Google Scholar 

  132. Yuan W, Hu Z, Su J, Wu F, Liu Z, Jin T (2012) Preparation and characterization of recombinant human growth hormone–Zn2+dextran nanoparticles using aqueous phase–aqueous phase emulsion. Nanomedicine NBM 8:424–427

    Article  CAS  Google Scholar 

  133. Wu F, Zhou Z, Su J, Wei L, Yuan W, Ji (2013) Development of dextran nanoparticles for stabilizing delicate proteins. Nanoscale Res Lett 8:197

    Article  CAS  Google Scholar 

  134. Delgado D, Gascón AR, Del Pozo-Rodríguez A, Echevarría E, Ruiz de Garibay AP, Rodríguez JM, Solinís MA (2012) Dextran-protamine-solid lipid nanoparticles as a non-viral vector for gene therapy: in vitro characterization and in vivo transfection after intravenous administration to mice. Int J Pharm 425:35–43

    Article  CAS  Google Scholar 

  135. Sarmento B, Ribeiro A, Veiga F, Ferreira D (2006) Development and characterization of new insulin containing polysaccharide nanoparticles. Colloids Surf B Biointerfaces 53:193–202

    Article  CAS  Google Scholar 

  136. Abedini F, Hosseinkhani H, Ismail M, Domb AJ, Omar AR, Chong PP, Hong PD, Yu DS, Farber IY (2012) Cationized dextran nanoparticle-encapsulated CXCR4-siRNA enhanced correlation between CXCR4 expression and serum alkaline phosphatase in a mouse model of colorectal cancer. Int J Nanomed 7:4159–4168

    CAS  Google Scholar 

  137. Shu XZ, Ahmad S, Liu Y, Prestwich GD (2006) Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. J Biomed Mater Res, Part A 79(4):902–912

    Article  CAS  Google Scholar 

  138. Miura S, Teramura Y, Iwata H (2006) Encapsulation of islets with ultra-thin polyion complex membrane through poly(ethylene glycol)-phospholipids anchored to cell membrane. Biomaterials 27:5828–5835

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Board of Research in Nuclear Science [BRNS, Grant No.: 34(1)14/35/2014-BRNS], Mumbai, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejraj M. Aminabhavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aminabhavi, T.M., Deshmukh, A.S. (2016). Polysaccharide-Based Hydrogels as Biomaterials. In: Kalia, S. (eds) Polymeric Hydrogels as Smart Biomaterials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-25322-0_3

Download citation

Publish with us

Policies and ethics