Skip to main content

Polymeric Hydrogels: A Review of Recent Developments

  • Chapter
  • First Online:
Book cover Polymeric Hydrogels as Smart Biomaterials

Abstract

Hydrogels are special types of polymers that have enormous capacity to absorb large volumes of water. Hydrogels are natural as well as man-made. To suit to a type of an application, hydrogel can be modified to tailor made properties that can be exploited for natural, applied, and medical sciences. This chapter deals with the recent research done in the area of hydrogels, modified hydrogels, hydrogel composites, and nanocomposites. General trends of the thrust areas where hydrogels have prime role of importance were biomedical and health care. However, the other areas such as environmental aspects for the utility of hydrogels have also been an area of interest among researchers across the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanaka T (1978) Collapse of gels and the critical end point. Phys Rev Lett 40:820–823

    Article  CAS  Google Scholar 

  2. Shibayama M, Tanaka T (1993) Phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62

    Article  CAS  Google Scholar 

  3. Lindemann B, Schroder UP, Oppermann W (1997) Influence of crosslinker reactivity on the formation of inhomogeneities in hydrogels. Macromolecules 30:4073–4077

    Article  CAS  Google Scholar 

  4. Kizilay MY, Okay O (2004) Effect of swelling on spatial inhomogeneity in poly(acrylamide) gels formed at various monomer concentrations. Polymer 45:2567–2576

    Article  CAS  Google Scholar 

  5. Gundogan N, Okay O, Oppermann W (2004) Swelling, elasticity and spatial inhomogeneity of poly(N, N-dimethylacrylamide) hydrogels formed at various polymer concentrations. Macromol Chem Phys 205:814–823

    Article  CAS  Google Scholar 

  6. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Euro J Pharma Biopharma 50:27–46

    Article  CAS  Google Scholar 

  7. http://www.rxlist.com

  8. Wiese KG, Heinemann DEH, Ostermeirer D, Peters JH (2001) Biomaterial properties and biocompatibility in cell culture of a novel self-inflating hydrogel tissue expander. J Biomed Mater Res 54:179–188

    Article  CAS  Google Scholar 

  9. List of contact lenses allowed to be sold in the United States. Food and Drug Administration Website. http://www.fda.gov/cdrh/contactlenses/lenslist.html

  10. Chen Q, Zhu L, Zhao C, Zheng J (2012) Hydrogels for removal of heavy metals from aqueous solution. J Environ Anal Toxicol, 2012 [Open access]

    Google Scholar 

  11. Omidian H, Park K (2012) Hydrogels. In: Siepmann J, Siegel R, Rathbone M (eds) Fundamentals and applications of controlled release drug delivery. Spinger, New York, pp 75–106

    Google Scholar 

  12. Hejcl A, Lesny P, Pradny M, Michalek J, Jendelova P, Stulik J, Sykova E (2008) Biocompatible hydrogels in spinal cord injury repair. Physiol Res 57:S121–S132

    CAS  Google Scholar 

  13. Zhong YH, Bellamkonda RV (2008) Biomaterials for the central nervous system. J R Soc Interface 5:957–975

    Article  CAS  Google Scholar 

  14. Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva S, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030

    Article  CAS  Google Scholar 

  15. Chung HJ, Park TG (2007) Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Delivery Rev 59:249–262

    Article  CAS  Google Scholar 

  16. Willerth SM, Sakiyama-Elbert SE (2007) Approaches to neural tissue engineering using scaffolds for drug delivery. Adv Drug Delivery Rev 59:325–338

    Article  CAS  Google Scholar 

  17. Perale G, Rossi F, Sundstrom E, Bacchiega S, Masi M, Forloni G, Veglianese P (2011) Hydrogels in spinal cord injury repair strategies. ACS Chem Neurosci 2:336–345

    Article  CAS  Google Scholar 

  18. Betz M, Hormansperger J, Fuchs T, Kulozik U (2012) Swelling behaviour, charge and mesh size of thermal protein hydrogels as influenced by pH during gelation. Soft Matter 8:2477

    Article  CAS  Google Scholar 

  19. von Wald Cresce A, Dandu R, Burger A, Cappello J, Ghandehari H (2008) Characterization and real-time imaging of gene expression of adenovirus embedded silk-elastinlike protein polymer hydrogels. Mol Pharmaceu 5:891–897

    Google Scholar 

  20. Numata K, Katashima T, Sakai T (2011) State of water, molecular structure, and cytotoxicity of silk hydrogels. Biomacromolecules 12:2137–2144

    Article  CAS  Google Scholar 

  21. Abd El-Rehim HA, Hegazy ESA, Abd El-Mohdy HL (2004) Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance. J Appl Polym Sci 93:1360–1371

    Google Scholar 

  22. Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521

    Article  CAS  Google Scholar 

  23. Saboktakin MR, M.i Tabatabaei R (2015) Supramolecular hydrogels as drug delivery systems. Int J Bio Macro 75:426–436

    Google Scholar 

  24. Buwalda SJ, Kristel WM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Controlled Release 190:254–273

    Article  CAS  Google Scholar 

  25. Hassan CM, Peppas NA (2000) Structure and applications of polyvinyl alcohol hydrogels produced convestional cross-linking or by freeze/thawing method. Adv Polym Sci 153:37–65

    Article  CAS  Google Scholar 

  26. Tsutsumi K, Takayama K, Machida Y, Ebert CD, Nakatomi I, Nagai T, Pharma STP (1994) Formulation of buccal mucoadhesive dosage form of ergotomine tartrate. Sci. 4:230

    CAS  Google Scholar 

  27. Dinu MV, Přádný M, Drăgan ES, Michálek J (2013) Morphogical and swelling properties of porous hydrogels based on poly(hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. Polym Res 20:285

    Article  Google Scholar 

  28. Nho YC, Park JS, Lim YM (2014) Preparation of poly(acrylic acid) hydrogel by radiation crosslinking and its application for mucoadhesives. Polymers 6:890–898 [Open Access]

    Google Scholar 

  29. Saika S, Miyamoto T, Ohnishi Y (2003) Histology of anterior capsule opacification with a polyHEMA/HOHEXMA hydrophilic hydrogel intraocular lens compared to poly (methyl methacrylate), silicone, and acrylic lenses. J Cataract Refract Surg 29:1198

    Article  Google Scholar 

  30. Kubinova S, Horak D, Kozubenko N, Vanecek V, Proks V, Price J, Cocks G, Sykova E (2010) The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors. Biomaterials 31:5966–5975

    Article  CAS  Google Scholar 

  31. Kubinova S, Horak D, Sykova E (2009) Cholesterol-modified superporous poly(2- hydroxyethyl methacrylate) scaffolds for tissue engineering. Biomaterials 30:4601–4609

    Article  CAS  Google Scholar 

  32. Kumar N, Ganapathy H, Kim J, Jeong YS, Jeong YT (2008) Preparation of poly 2-hydroxyethyl methacrylate functionalized carbon nanotubes as novel biomaterial nanocomposites. Eur Polym J 44:579–586

    Article  CAS  Google Scholar 

  33. Rizzi S, Halstenberg S, Hubbell J (2001) Synthetic, enzymatically degradable extracellular matrices formed from recombinant protein-(poly)ethyleneglycol. Eur Cells Mat 2:82–83

    Google Scholar 

  34. Gong C, Shi S, Dong P-W, Kan B, Gou M, Wang XH, Li X-Y, Luo F, Zhao X, Wei Y-Q, Qian ZY (2009) Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharmaceutics 365:89–99

    Article  CAS  Google Scholar 

  35. Lin C, Anseth K (2008) Cellcell communication mimicry with poly(ethylene glycol) hydrogels for enhancing β-cell function. Pharmac Res 26:6380–6385

    Google Scholar 

  36. Kim B, Peppas N (2003) Poly(ethylene glycol)-containing hydro-gels for oral protein delivery applications. Biomed Microdevices 5:333–341

    Article  CAS  Google Scholar 

  37. Lum L, Elisseeff J (2003) Ch. 4 In: Ashammakhi N, Ferretti P (eds) Topics in tissue engineering. University of Oulu, Oulu

    Google Scholar 

  38. Li J, Wang N, Wu X (1998) Poly(vinyl alcohol) nanoparticles prepared by freezing- thawing process for protein/peptide drug delivery. J Control Release 56:117–126

    Article  CAS  Google Scholar 

  39. Ajji Z, Othoman I, Rosiak J (2005) Production of hydrogel wound dressings using gamma radiations. Nucl Instrum Methods Phys Res B 229:375–380

    Article  CAS  Google Scholar 

  40. Ramires P, Miccoli M, Panzarini E, Dini L, Protopapa C (2005) In vitro and in vivo biocompatibility evaluation of a polyalkylimide hydrogel for soft tissue augmentation. J Biomed Mater Res B Appl Biomater 72:230–238

    Article  CAS  Google Scholar 

  41. Zhang X, Yang Y, Yao J, Shao Z, Chen X (2014) Strong collagen hydrogels by oxidized dextran modification. ACS Sustainable Chem Eng 2:1318–1324

    Article  CAS  Google Scholar 

  42. Choi B, Kim S, Lin B, Wu BM, Lee M (2014) Cartilaginous extracellular matrix- modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces 6:20110–20121

    Article  CAS  Google Scholar 

  43. Park KM, Yang J-A, Jung H, Yeom J, Park JS, Park KH, Hoffman AS, Hahn SK, Kim K (2012) in situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano 6:2960–2968

    Article  CAS  Google Scholar 

  44. Ahmad N, Amin MCIM, Mahali SM, Ismail I, Chuang VTG (2014) Biocompatible and mucoadhesive bacterial cellulose-g-poly(acrylic acid) hydrogels for oral protein delivery. Mol Pharmaceutics 11:4130–4142

    Article  CAS  Google Scholar 

  45. Wang J, Miao X, Fengzhao Q, Ren C, Yang Z, Wang L (2013) Using a mild hydrogelation process to confer stable hybrid hydrogels for enzyme immobilization. RSC Adv. 3:16739–16746

    Article  CAS  Google Scholar 

  46. Hu X, Feng L, Xie A, Wei W, Wang S, Zhang J, Dong W (2014) Synthesis and characterization of a novel hydrogel: salecan/polyacrylamide semi-IPN hydrogel with a desirable pore structure. J Mater Chem B 2:3646–3658

    Article  CAS  Google Scholar 

  47. Sui X, Feng X, Luca AD, van Blitterswijk CA, Moroni L, Hempenius MA, Vancso GJ (2013) Poly(N-isopropylacrylamide)–poly(ferrocenylsilane) dual-responsive hydrogels: synthesis, characterization and antimicrobial applications. Polym Chem 4:337–342

    Article  CAS  Google Scholar 

  48. Li L, Ren L, Wang L, Liu S, Zhang Y, Tang L, Wang Y (2015) Effect of water state and polymer chain motion on the mechanical properties of a bacterial cellulose and polyvinyl alcohol (BC/PVA) hydrogel. RSC Adv 5:25525–25531

    Article  CAS  Google Scholar 

  49. Qi X, Hu X, Wei W, Yu H, Li J, Zhang J, Dong W (2015) Investigation of Salecan/poly(vinyl alcohol) hydrogels prepared by freeze/thaw method. Carbo Polym 118:60–69

    Article  CAS  Google Scholar 

  50. Selvam S, Pithapuram MV, Victor SP, Muthu J (2015) Injectable in situ forming xylitol–PEG-based hydrogels for cell encapsulation and delivery. Col Surf B Biointerfaces 126:35–43

    Article  CAS  Google Scholar 

  51. Li D, Zhang X, Yao J, Zeng Y, Simon GP, Wang H (2011) Composite polymer hydrogels as draw agents in forward osmosis and solar dewatering. Soft Matter 7:10048–10056

    Article  CAS  Google Scholar 

  52. Giammanco EG, Sosnofsky CT, Ostrowski AD (2015) Light-responsive iron(III)—polysaccharide coordination hydrogels for controlled delivery. ACS Appl Mater Interfaces 7:3068–3076

    Article  CAS  Google Scholar 

  53. Ni T, Xu L, Sun Y, Yao W, Dai T, Lu Y (2015) Facile fabrication of reduced graphene oxide/polypyrrole composite hydrogels with excellent electrochemical performance and compression capacity. ACS Sustainable Chem Eng 3:862–870

    Article  CAS  Google Scholar 

  54. Ananthoji R, Eubank JF, Nouar F, Mouttaki H, Eddaoudi M, Harmon JP (2011) Symbiosis of zeolite-like metal–organic frameworks (rho-ZMOF) and hydrogels: composites for controlled drug release. J Mater Chem 21:9587–9594

    Article  CAS  Google Scholar 

  55. Li Z, Su Y, Xie B, Wang H, Wen T, He C, Shen H, Wuc D, Wang D (2013) A tough hydrogel–hydroxyapatite bone-like composite fabricated in situ by the electrophoresis approach. J Mater Chem B 1:1755–1764

    Article  CAS  Google Scholar 

  56. Bakarich SE, Gorkin R, in het Panhuis M, Spinks GM (2014) Three-dimensional printing fiber reinforced hydrogel composites. ACS Appl Mater Interfaces 6:15998–16006

    Article  CAS  Google Scholar 

  57. Qi X, Guan Y, Chen G, Zhang B, Ren J, Peng F, Sun R (2015) A non-covalent strategy for montmorillonite/xylose self-healing hydrogels. RSC Adv 5:41006–41012

    Article  CAS  Google Scholar 

  58. Xia N, Zhang Y, Chang K, Gai X, Jing Y, Li S, Liu L, Qu G (2015) Ferrocene-phenylalanine hydrogels for immobilization of acetylcholinesterase and detection of chlorpyrifos. J Electroana Chem 746:68–74

    Article  CAS  Google Scholar 

  59. Guarino V, Ambrosio L (2013) Thermoset composite hydrogels for bone/intervertebral disc interface. Mater Lett 110:249–252

    Article  CAS  Google Scholar 

  60. Dumitrescu AM, Slatineanu T, Poiata A, Iordana AR, Mihailescu C, Palamaru MN (2014) Advanced composite materials based on hydrogels and ferrites for potential biomedical applications. Collo Surf A Physicochem Eng Aspects 455:185–194

    Article  CAS  Google Scholar 

  61. Qu B, Chen C, Qian L, Xiao H, He B (2014) Facile preparation of conductive composite hydrogels based on sodium alginate and graphite. Mate Lett 137:106–109

    Article  CAS  Google Scholar 

  62. Yang Q, Adrus N, Tomicki F, Ulbricht M (2011) Composites of functional polymeric hydrogels and porous membranes. J Mater Chem 21:2783–2811

    Article  CAS  Google Scholar 

  63. Gaharwar AK, Avery RK, Assmann A, Paul A, McKinley GH, Khademhosseini A, Olsen BD (2014) shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8:9833–9842

    Article  CAS  Google Scholar 

  64. Wang H, Yi H, Chen X, Wang X (2014) One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors. J Mater Chem A 2:1165–1173

    Article  CAS  Google Scholar 

  65. Chang C-W, van Spreeuwel A, Zhang C, Varghese S (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering Scaffold. Soft Matter 6:5157–5164

    Article  CAS  Google Scholar 

  66. Cheng C, Liu Z, Li X, Su B, Zhou T, Zhao C (2014) Graphene oxide interpenetrated Polymeric composite hydrogels as highly effective adsorbents for water treatment. RSC Adv 4:42346–42357

    Article  CAS  Google Scholar 

  67. Baeissa A, Dave N, Smith BD, Liu Juewen (2010) DNA-functionalized monolithic hydrogels and gold nanoparticles for colorimetric DNA detection. ACS Appl Mater Interface 2:3594–3600

    Article  CAS  Google Scholar 

  68. Gu X, Yang Y, Hu Y, Hu M, Wang C (2015) Fabrication of graphene-based xerogels for removal of heavy metal ions and capacitive deionization. ACS Sustainable Chem Eng 3:1056–1065

    Article  CAS  Google Scholar 

  69. Xua M, Huanga Q, Wanga X, Suna R (2015) Highly tough cellulose/graphene composite hydrogels prepared from ionic liquids. Industrial Crops Products 70:56–63

    Article  Google Scholar 

  70. Güler MA, Gök MK, Figenc AK, Özgümüş S (2015) Swelling, mechanical and mucoadhesion properties of Mt/starch-g-PMAA nanocomposite hydrogels. App Clay Sci 112–113:44–52

    Article  Google Scholar 

  71. De Filpo G, Palermo AM, Munno R, Molinaro L, Formoso P, Nicoletta FP (2015) Gellan gum/titanium dioxide nanoparticle hybrid hydrogels for the cleaning and disinfection of parchment. Inter Biodeter Biodegrad 103:51–58

    Article  Google Scholar 

  72. Isabel González-Sánchez M, Perni S, Tommasi G, Morris NG, Hawkins K, López-Cabarcos E, Prokopovich P (2015) Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater Sci Eng C 50:332–340

    Article  Google Scholar 

  73. Tóth IY, Veress G, Szekeres M, Illés E, Tombác E (2015) Magnetic hyaluronate hydrogels: preparation and characterization. J Magnet Magnetic Mater 380:175–180

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank national research foundation and University of South Africa for the financial support and other facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Bhardwaj Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mishra, S.B., Mishra, A.K. (2016). Polymeric Hydrogels: A Review of Recent Developments. In: Kalia, S. (eds) Polymeric Hydrogels as Smart Biomaterials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-25322-0_1

Download citation

Publish with us

Policies and ethics