Skip to main content

Point Pattern Analysis as Tool for Digital Geoarchaeology: A Case Study of Megalithic Graves in Schleswig-Holstein, Germany

  • Chapter
  • First Online:
Digital Geoarchaeology

Part of the book series: Natural Science in Archaeology ((ARCHAEOLOGY))

Abstract

In this contribution, we apply different methods of spatial and geomorphometric analysis in order to present a general approach of data exploration in areas where detailed local information is absent. Our data are based on locations of megalithic graves from Funnel Beaker societies (3700–2800 BCE) in the area of Schleswig-Holstein, Germany. Using these locations, we apply methods of point pattern analysis in order to reconstruct the spatial processes that created the sample: We use density-based measures to show the influence of first-order effects on the dataset. While first-order effects are related to the underlying areal characteristics of the point locations and hence are determinant of their intensity, second-order effects are the result of interactions between points. We conduct distance-related approaches, e.g. focusing on nearest-neighbour characteristics, in order to investigate the interaction between the points. The point pattern analyses are complemented by integrating geomorphometric measures that are indirectly indicative for some general environmental conditions, even in prehistoric times. This helps (a) to relate first-order effects to societal or environmental features and (b) to understand the specific pattern of interactions between the points. The necessary raw data in the form of digital elevation models are freely available for large parts of the globe. All analyses are conducted using free and open-source software in order to provide their limitless application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Note that the term event is used here in the technical sense of spatial point pattern analysis: In a spatial point pattern, locations are referred to as events in order to distinguish them from other points of the region in question (Diggle 2013, 1).

References

  • Ahnert F (1981) Über die Beziehung zwischen quantitativen, semiquantitativen und qualitativen Methoden in der Geomorphologie. Z Geomorphol Supplement Band 39:1–28

    Google Scholar 

  • Ahnert F (2003) Einführung in die Geomorphologie. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12(6):1–42

    Article  Google Scholar 

  • Baddeley A, Turner R (2015) Spatstat manual. CRAN. http://www.spatstat.org

  • Baddeley AJ, Møller J, Waagepetersen R (2000) Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat Neerl 54(3):329–350. https://doi.org/10.1111/1467-9574.00144

    Article  Google Scholar 

  • Böhner J, McCloy KR, Strobl J (eds) (2006) SAGA – analysis and modelling applications. Göttinger Geographische Abhandlungen 115

    Google Scholar 

  • Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis with R. Springer, New York

    Google Scholar 

  • Bivand R, Keitt T, Rowlingson B (2015) Rgdal: bindings for the geospatial data abstraction library. r package version 0.9-2, http://CRAN.R-project.org/package=rgdal

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York. http://link.springer.com/10.1007/978-1-4419-7976-6

    Book  Google Scholar 

  • Chisholm M (2007) Rural settlement and land use. Hutchinson, London

    Google Scholar 

  • De Reu J, Bourgeois J, Bats M, Zwertvaegher A, Gelorini V, De Smedt P, Chu W, Antrop M, De Maeyer P, Finke P, Van Meirvenne M, Verniers J, Crombé P (2013) Application of the topographic position index to heterogeneous landscapes. Geomorphology 186:39–49. https://doi.org/10.1016/j.Geomorph.2012.12.015

    Article  Google Scholar 

  • Diggle PJ (2013) Statistical analysis of spatial and spatio-temporal point patterns, 3rd edn. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Fritsch B, Furholt M, Hinz M, Lorenz L, Nelson H, Schafferer G, Schiesberg S, Sjögren KG (2010) Dichtezentren und lokale Gruppierungen – Eine Karte zu den Großsteingräbern Mittel- und Nordeuropas. J Neolithic Archaeol. 10.12766/jna.2010.56. http://www.jna.uni-kiel.de/index.php/jna/article/view/56

  • Furholt M (2012) Monuments and durable landscapes in the Neolithic of southern Scandinavia and northern Central Europe. In: Furholt M, Hinz M, Miscka D (eds) “As time goes by?” Monumentality, landscapes and the temporal perspective. Proceedings of the international workshop “socio-environmental dynamics over the last 12,000 years: the creation of landscapes II (14th–18th March 2011)” in Kiel, no. 206 in Universitätsforschungen zur prähistorischen Archäologie. Habelt, Bonn, pp 115–132

    Google Scholar 

  • Gallant JC, Read AM, Dowling TI (2012) Removal of tree offsets from SRTM and other digital surface models. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci XXXIX-B4:275–280. https://doi.org/10.5194/isprsarchives-XXXIX-B4-275-2012

    Article  Google Scholar 

  • Guisan A, Weiss SB, Weiss AD (1999) GLM versus CCA spatial modeling of plant species distribution. Plant Ecol 143(1):107–122. http://link.springer.com/article/10.1023/A:1009841519580

    Article  Google Scholar 

  • Hijmans RJ (2015) Raster: geographic data analysis and modeling. R package version 2.3-40. http://CRAN.R-project.org/package=raster

  • Hill T (2002) Von Wegen: auf den Spuren des Ochsenweges (Heerweg) zwischen dänischer Grenze und Eider. No. 12 in Flensburger regionale Studien, Inst. für Geographie und ihre Didaktik, Landeskunde und Regionalforschung, Flensburg

    Google Scholar 

  • Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, Chichester, WS

    Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org

  • Jasiewicz J, Stepinski TF (2013) Geomorphons—a pattern recognition approach to classification and mapping of landforms. Geomorphology 182:147–156. https://doi.org/10.1016/j.geomorph.2012.11.005

    Article  Google Scholar 

  • Knitter D, Nakoinz O, Del Fabbro R, Kohlmeyer K, Meyer M, Schütt B (2014) The centrality of Aleppo and its environs. eTopoi J Anc Stud 3:107–127

    Google Scholar 

  • Koethe R, Lehmeier F (1996) SARA – System zur Automatischen Relief-Analyse. User manual. Department of Geography, University of Goettingen (unpublished)

    Google Scholar 

  • Kvamme KL (2006) There and back again: revisiting archaeological location modeling. In: Mehrer MW, Wescott KL (eds) GIS and archaeological site location modeling. Taylor & Francis, Boca Raton, pp 2–34

    Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology. In: Developments in environmental modelling, 3rd english edn, vol 24. Elsevier, Amsterdam

    Google Scholar 

  • Liedtke H, Marcinek J (eds) (2002) Physische Geographie Deutschlands, 3rd edn. Perthes Geographie-Kolleg, Klett-Perthes, Gotha

    Google Scholar 

  • Litt T, Behre KE, Meyer KD, Stephan HJ, Wansa S (2007) Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes. Eiszeitalter und Gegenwart 56(1-2):7–65. https://doi.org/10.3285/eg.56.1-2.02

    Google Scholar 

  • Lloyd CD (2011) Local models for spatial analysis. CRC Press, Boca Raton

    Google Scholar 

  • Lüth P (2011) Die neolithische Besiedlung des nördlichen Schleswig-Holsteins am Übergang vom Früh- zum Mittelneolithikum. Offa Berichte und Mitteilungen zur Urgeschichte, Frühgeschichte und Mittelalterarchäologie 65/66 (2008/2009):93–133

    Google Scholar 

  • Meynen E, Schmithüsen J (eds) (1962) Handbuch der naturräumlichen Gliederung Deutschlands, vol Band II. Bundesanstalt für Landeskunde und Raumforschung, Bad Godesberg

    Google Scholar 

  • Müller J (2011) Megaliths and funnel beakers: societies in change 4100–2700 BC. Drieendertigste Kroon-Voordracht, Amsterdam

    Google Scholar 

  • Müller J (2014) 4100–2700 B.C. monuments and ideologies in the neolithic landscape. In: Osborne JF (ed) Approaching monumentality in archaeology, The Institute for European and Mediterranean Archaeology distinguished monograph series. State University of New York Press, Albany, pp 181–214

    Google Scholar 

  • Neteler M, Bowman M, Landa M, Metz M (2012) GRASS GIS: a multi-purpose Open Source GIS. Environ Model Softw 31:124–130. https://doi.org/10.1016/j.envsoft. 2011.11.014

    Article  Google Scholar 

  • Olaya V, Conrad O (2009) Chapter 12 Geomorphometry in SAGA. In: Hengl T, Reuter HI (eds) Geomorphometry – concepts, software, applications. Developments in soil science, vol 33. Elsevier, Amsterdam, pp 293–308

    Chapter  Google Scholar 

  • Openshaw S (1984) The modifiable areal unit problem. Geo Abstracts Univ. of East Anglia, Norwich

    Google Scholar 

  • O’Sullivan D, Perry GLW (2013) Spatial simulation: exploring pattern and process. Wiley, Chichester, WS

    Book  Google Scholar 

  • O’Sullivan D, Unwin D (2010) Geographic information analysis. Wiley, Hoboken

    Book  Google Scholar 

  • Pebesma E, Bivand RS (2005) S classes and methods for spatial data: the sp package. R News 5(2):9–13. ftp://200.236.31.2/CRAN/web/packages/sp/vignettes/intro_sp.pdf

    Google Scholar 

  • Pike R, Evans I, Hengl T (2009) Chapter 1 Geomorphometry: a brief guide. In: Hengl T, Reuter HI (eds) Geomorphometry – concepts, software, applications. Developments in soil science, vol 33. Elsevier, Amsterdam, pp 3–30

    Chapter  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

    Google Scholar 

  • Ripley BD (2004) Spatial statistics. Wiley series in probability and statistics. Wiley, Hoboken

    Google Scholar 

  • Schmidtke KD (1995) Die Entstehung Schleswig-Holsteins: von der Eiszeit zur Kulturlandschaft, 3rd edn. Wachholtz, Neumünster

    Google Scholar 

  • Schütt B, Löhr H, Baumhauer R (2002) Mensch-Umwelt-Beziehungen in Raum und Zeit–Konzeption eines Fundstellenkatasters für die Region Trier. Petermanns Geographische Mitteilungen 146(6):74–83

    Google Scholar 

  • Shortridge A, Messina J (2011) Spatial structure and landscape associations of SRTM error. Remote Sens Environ 115(6):1576–1587. https://doi.org/10.1016/j.rse.2011.02.017. http://www.sciencedirect.com/science/article/pii/S0034425711000678

    Article  Google Scholar 

  • Ssymank A (1994) Neue Anforderungen im europäischen Naturschutz. Das Schutzgebietssystem Natura 2000 und die FFH -Richtlinie der EU. Natur und Landschaft 69(9):395–406

    Google Scholar 

  • Stepinski TF, Jasiewicz J (2011) Geomorphons – a new approach to classification of landforms. In: Geomorphometry 2011, Redlands

    Google Scholar 

  • Stewig R (1982) Landeskunde von Schleswig-Holstein. In: Geocolleg, 2nd edn, vol 5. Borntraeger, Stuttgart (1. Aufl. im Hirt-Verl., Kiel)

    Google Scholar 

  • Tagil S, Jenness J (2008) GIS-based automated landform classification and topographic, landcover and geologic attributes of landforms around the Yazoren Polje, Turkey. J Appl Sci 8:910–921

    Article  Google Scholar 

  • Thomas M (1949) A generalization of Poisson’s binomial limit for use in ecology. Biometrika 36(1–2):18–25. https://doi.org/10.1093/biomet/36.1-2.18. http://biomet.oxfordjournals.org/content/36/1-2/18

    Article  Google Scholar 

  • Tobler WR (1970) A computer movie simulating urban growth in the detroit region. Econ Geogr 46:234–240. https://doi.org/10.2307/143141. http://www.jstor.org/stable/143141

    Article  Google Scholar 

  • Verhagen P (2007) Case studies in archaeological predictive modelling. Leiden University Press, Leiden

    Book  Google Scholar 

  • Weiss A (2001) Topographic position and landforms analysis. In: Poster presentation, ESRI User Conference, San Diego, CA, pp 200–200

    Google Scholar 

  • Wickham H (2009) ggplot2: Elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wiegand T, Moloney KA (2004) Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104(2):209–229. http://www.jstor.org/stable/3547954

    Article  Google Scholar 

  • Wiegand T, Moloney KA (2013) Handbook of spatial point-pattern analysis in ecology. CRC Press, Boca Raton

    Google Scholar 

  • Witt W (1962) Schleswiger geest. In: Meynen E, Schmithüsen J (eds) Handbuch der naturräumlichen Gliederung Deutschlands, vol Band II. Bundesanstalt für Landeskunde und Raumforschung, Bad Godesberg, pp 1018–1021

    Google Scholar 

Download references

Acknowledgements

Daniel Knitter is grateful to the Excellence Cluster Topoi—The Formation and Transformation of Space and Knowledge in Ancient Civilizations—for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Knitter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Knitter, D., Nakoinz, O. (2018). Point Pattern Analysis as Tool for Digital Geoarchaeology: A Case Study of Megalithic Graves in Schleswig-Holstein, Germany. In: Siart, C., Forbriger, M., Bubenzer, O. (eds) Digital Geoarchaeology. Natural Science in Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-25316-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25316-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25314-5

  • Online ISBN: 978-3-319-25316-9

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics