Skip to main content

3D Laser Scanning for Geoarchaelogical Documentation and Analysis

  • Chapter
  • First Online:
Digital Geoarchaeology

Part of the book series: Natural Science in Archaeology ((ARCHAEOLOGY))

Abstract

Geoarchaeology is an interdisciplinary research area that applies geoscientific concepts, methods and knowledge for analysis of archaeological sites, as well as the reconstruction of past environments. Geoarchaeologic sites can be documented, and specific research questions can be solved by the implementation of available remote sensing methods, in particular by laser scanning. Therefore, the general workflow of applying laser scanning and particularly steps for data integration are shown, as well as specific analysis and visualization steps. However, there are still problems to be solved, which are, for example, the storage, exchange, quality control and metadata description of 3D models, as well as specific problems with each method.

The exemplary workflow in this chapter describes the steps of field campaign planning, data acquisition steps, preprocessing steps and different analysis. The main issues in field campaign preparation are training on the instrument and establishing common field procedures, as well as getting to know and discuss the aims of the project. Data acquisition in the field can be divided in the crucial steps of scan position estimation, setting the resolution and knowing the errors as well as conducting different registration tasks. These steps directly affect the necessary preprocessing steps, such as registration, filtering and further adjustments to the point clouds. The final data set can be used in the following analysis steps that are divided in an iconic reconstruction and symbolic modelling. For all of these steps, different software packages are listed. Finally, different analysis results are depicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al-Khedera S, Al-Shawabkeh Y, Haala N (2009) Developing a documentation system for desert palaces in Jordan using 3D laser scanning and digital photogrammetry. J Archaeol Sci 36(2):537–546. https://doi.org/10.1016/j.jas.2008.10.009

    Article  Google Scholar 

  • Alshawabkeh Y, Haala N, (2005) Automatic multi-image photo-texturing of complex 3D scenes. In: CIPA 2005 ICOMOS, Torino, Italy, pp 68–73

    Google Scholar 

  • Bae KH (2009) Evaluation of the convergence region of an automated registration method for 3D laser scanner point clouds. Sensors 9(1):355–375. https://doi.org/10.3390/s90100355

    Article  Google Scholar 

  • Baltsavias EP (1999) Airborne laser scanning: basic relations and formulas. ISPRS J Photogramm Remote Sens 54(2–3):199–214

    Article  Google Scholar 

  • Beraldin J-A, Blais F, Lohr U (2010) Laser scanning technology. In: Vosselman G, Maas HG (eds) Airborne and terrestrial laser scanning, 1st edn. Whittles Publishing, Dunbeath, pp 1–42

    Google Scholar 

  • Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Article  Google Scholar 

  • Bewley RH, Crutchley SP, Shell CA (2005) New light on an ancient landscape: lidar survey in the Stonehenge world heritage site. Antiquity 79(305):636–647

    Article  Google Scholar 

  • Briese C (2010) Extraction of digital terrain models. In: Vosselman G, Maas HG (eds) Airborne and terrestrial laser scanning, 1st edn. Whittles Publishing, Dunbeath, pp 135–168

    Google Scholar 

  • Brodu N, Lague D (2012) 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology. ISPRS J Photogramm 68:121–134. https://doi.org/10.1016/j.isprsjprs.2012.01.006

    Article  Google Scholar 

  • Brückner H, Gerlach R (2007) Geoarchäologie. In: Gebhardt H, Glaser R, Radtke U, Reuber P (eds) Geographie—Physische Geographie und Humangeographie. Elsevier, München, pp 513–516

    Google Scholar 

  • Bruno F, Bruno S, De Sensi G, Luchi ML, Mancuso S, Muzzupappa M (2010). From 3D reconstruction to virtual reality: A complete methodology for digital archaeological exhibition. J Cult Herit 11:42–49. doi:10.1016/j.culher.2009.02.006

    Article  Google Scholar 

  • Brunsdon C (2009) Geostatistical analysis of lidar data. In: Heritage GL, Large ARG (eds) Laser scanning for the environmental sciences, 1st edn. Wiley-Blackwell, Chichester, pp 66–81

    Google Scholar 

  • Buchroithner MF, Gaisecker T (2009) Terrestrial laser scanning for the visualization of complex dome in an extreme alpine cave system. Photogramm Fernerkun 4(4):329–339. https://doi.org/10.1127/1432-8364/2009/0025

    Article  Google Scholar 

  • Buckley SJ, Howell JA, Enge HD, Kurz TH (2008) Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. J Geol Soc Lond 165:625–638

    Article  Google Scholar 

  • Campbell RJ, Flynn PJ (2001) A survey of free-form object representation and recognition techniques. Comput Vis Image Underst 81(2):166–210. https://doi.org/10.1006/cviu.2000.0889

    Article  Google Scholar 

  • Chalmers A, Roussos I, Ledda P (2006) Authentic illumination of archaeological site reconstructions. Conference on colour in graphics, imaging, and vision, 2006 (1): pp 431–434

    Google Scholar 

  • Charlton ME, Coveney SJ, McCarthy T (2009) Issues in laser scanning. In: Heritage GL, Large ARG (eds) Laser scanning for the environmental sciences, 1st edn. Wiley-Blackwell, Chichester, pp 35–48

    Google Scholar 

  • Chase A, Chase D, Awe J, Weishampel J, Iannone G, Moyes H, Yaeger J, Brown K, Shrestha R, Carter W, Fernandez Diaz J (2014) Ancient Maya regional settlement and inter-site analysis: the 2013 west-central Belize LiDAR survey. Remote Sens 6(9):8671–8695. https://doi.org/10.3390/rs6098671

    Article  Google Scholar 

  • Chen Y, Medioni G (1992) Object modeling by registration of multiple range images. Image Vis Comput 10(3):145–155

    Article  Google Scholar 

  • Costamagna E, Spanò A (2013) CityGML for architectural heritage. In: Abdul Rahman A, Boguslawski P, Gold C, Said M (eds) Developments in multidimensional spatial data models. Lecture notes in geoinformation and cartography. Springer, Berlin. https://doi.org/10.1007/978-3-642-36379-5_14

    Google Scholar 

  • De Reu J, Plets G, Verhoeven G, De Smedt P, Bats M, Cherretté B, De Maeyer W, Deconynck J, Herremans D, Laloo P, Van Meirvenne M, De Clercq W (2013) Towards a three-dimensional cost-effective registration of the archaeological heritage. J Archaeol Sci 40(2):1108–1121. https://doi.org/10.1016/j.jas.2012.08.040

    Article  Google Scholar 

  • Devereux BJ, Amable GS, Crow P (2008) Visualisation of LiDAR terrain models for archaeological feature detection. Antiquity 82(316):470–479

    Article  Google Scholar 

  • Doneus M (2013) Openness as visualization technique for interpretative mapping of airborne lidar derived digital terrain models. Remote Sens 5(12):6427–6442

    Article  Google Scholar 

  • Doneus M, Briese C, Fera M, Janner M (2008) Archaeological prospection of forested areas using full-waveform airborne laser scanning. J Archaeol Sci 35(4):882–893. https://doi.org/10.1016/j.jas.2007.06.013

    Article  Google Scholar 

  • Doneus M, Doneus N, Briese C, Pregesbauer M, Mandlburger G, Verhoeven G (2013) Airborne laser bathymetry—detecting and recording submerged archaeological sites from the air. J Archaeol Sci 40(4):2136–2151. https://doi.org/10.1016/j.jas.2012.12.021

    Article  Google Scholar 

  • Dore C, Murphy M (2012) Integration of historic building information modeling (HBIM) and 3D GIS for recording and managing cultural heritage sites. In: 18th international conference on virtual systems and multimedia (VSMM), 2012, 2–5 Sept 2012, pp 369–376. https://doi.org/10.1109/VSMM.2012.6365947

  • Elseberg J, Borrmann D, Nüchter A (2013) One billion points in the cloud—an octree for efficient processing of 3D laser scans. ISPRS J Photogramm Remote Sens 76:76–88. https://doi.org/10.1016/j.isprsjprs.2012.10.004

    Article  Google Scholar 

  • Elez J, Cuezva S, Fernandez-Cortes A, Garcia-Anton E, Benavente D, Cañaveras JC, Sanchez-Moral S (2013) A GIS-based methodology to quantitatively define an Adjacent Protected Area in a shallow karst cavity: The case of Altamira cave. J Environ Manage 118:122–134. doi:10.1016/j.jenvman.2013.01.020

    Article  Google Scholar 

  • Fan L, Smethurst JA, Atkinson PM, Powrie W (2015) Error in target-based georeferencing and registration in terrestrial laser scanning. Comput Geosci 83:54–64. https://doi.org/10.1016/j.cageo.2015.06.021

    Article  Google Scholar 

  • Fernandez-Diaz J, Carter W, Shrestha R, Glennie C (2014) Now you see it… Now you don’t: understanding airborne mapping LiDAR collection and data product generation for archaeological research in Mesoamerica. Remote Sens 6(10):9951–10001. https://doi.org/10.3390/rs6109951

    Article  Google Scholar 

  • Gallay M, Hochmuth Z, Kaňuk J, Hofierka J (2016) Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning. Hydrol Earth Syst Sci 20(5):1827–1849. https://doi.org/10.5194/hess-20-1827-2016

    Article  Google Scholar 

  • Girardeau-Montaut D (2016) Cloudcompare (version 2.7) (gpl software)—EDF R&D, Telecom Paris-Tech. http://www.danielgm.net/cc/. Accessed 15 July 2016

  • Grant D, Bethel J, Crawford M (2012) Point-to-plane registration of terrestrial laser scans. ISPRS J Photogramm Remote Sens 72:16–26. https://doi.org/10.1016/j.isprsjprs.2012.05.007

    Article  Google Scholar 

  • Gruen A, Akca D (2005) Least squares 3D surface and curve matching. ISPRS J Photogramm Remote Sens 59(3):151–174. https://doi.org/10.1016/j.isprsjprs.2005.02.006

    Article  Google Scholar 

  • Guidi G, Russo M, Angheleddu D (2014) 3D survey and virtual reconstruction of archaeological sites. Digit Appl Archaeol Cult Herit 1(2):55–69. https://doi.org/10.1016/j.daach.2014.01.001

    Google Scholar 

  • Happa J, Artusi A, Dubla P, Bashford-Rogers T, Debattista K, Hulusi V, Chalmers A (2009) The virtual reconstruction and daylight illumination of the Panagia Angeloktisti. In: Paper presented at the proceedings of the 10th international conference on virtual reality, archaeology and cultural heritage, St. Julians, Malta

    Google Scholar 

  • Happa J, Mudge M, Debattista K, Artusi A, Gonçalves A, Chalmers A (2010) Illuminating the past: state of the art. Virtual Reality 14(3):155–182. https://doi.org/10.1007/s10055-010-0154-x

    Article  Google Scholar 

  • Hare T, Masson M, Russell B (2014) High-density LiDAR mapping of the ancient city of Mayapán. Remote Sens 6(9):9064–9085. https://doi.org/10.3390/rs6099064

    Article  Google Scholar 

  • Hoffmeister D (2014) Feasibility studies of terrestrial laser scanning in coastal geomorphology, agronomy, and geoarchaeology. Dissertation, University of Cologne. http://kups.ub.uni-koeln.de/5497/. Licence at https://creativecommons.org/licenses/by-nc/2.5/

  • Hoffmeister D (2017) Simulation of tallow lamp light within the 3D model of the Ardales cave, Spain. Quat Int. 430A:22–29. https://doi.org/10.1016/j.quaint.2016.05.010

  • Hoffmeister D, Zellmann S, Kindermann K, Pastoors A, Lang U, Bubenzer O, Weniger GC, Bareth G (2014) Geoarchaeological site documentation and analysis of 3D data derived by terrestrial laser scanning. ISPRS Ann Photogramm Remote Sens Spat Inf Sci II-5:173–179. https://doi.org/10.5194/isprsannals-II-5-173-2014

    Article  Google Scholar 

  • Hoffmeister D, Zellmann S, Pastoors A, Kehl M, Cantalejo P, Ramos J, Weniger G-C, Bareth G (2016) The investigation of the Ardales Cave, Spain – 3D documentation, topographic analyses, and lighting simulations based on terrestrial laser scanning. Archaeol Prospect 23(2):75–86. https://doi.org/10.1002/arp.1519

    Article  Google Scholar 

  • Höfle B (2014) Radiometric correction of terrestrial LiDAR point cloud data for individual maize plant detection. IEEE Geosci Remote Sens 11(1):94–98. https://doi.org/10.1109/LGRS.2013.2247022

    Article  Google Scholar 

  • Höfle B, Pfeifer N (2007) Correction of laser scanning intensity data: data and model-driven approaches. ISPRS J Photogramm Remote Sens 62(6):415–433. https://doi.org/10.1016/j.isprsjprs.2007.05.008

    Article  Google Scholar 

  • Jaubert J, Genty D, Valladas H, Camus H, Courtaud P, Ferrier C, Feruglio V, Fourment N, Konik S, Villotte S, Bourdier C, Costamagno S, Delluc M, Goutas N, Katnecker É, Klaric L, Langlais M, Ledoux L, Maksud F, O’Farrell M, Mallye JB, Pierre M, Pons-Branchu E, Régnier É, Théry-Parisot I (2016) The chronology of human and animal presence in the decorated and sepulchral cave of Cussac (France). Quat. Int. 1–20. https://doi:10.1016/j.quaint.2016.01.052

    Google Scholar 

  • Katsianis M, Tsipidis S, Kotsakis K, Kousoulakou A (2008) A 3D digital workflow for archaeological intra-site research using GIS. J Archaeol Sci 35(3):655–667. https://doi.org/10.1016/j.jas.2007.06.002

    Article  Google Scholar 

  • Kazhdan M, Bolitho M, Hoppe H (2006) Poisson surface reconstruction. In Polthier K, Sheffer A (eds) Proceedings of the 4th eurographics symposium on geometry processing

    Google Scholar 

  • Lambers K, Eisenbeiss H, Sauerbier M, Kupferschmidt D, Gaisecker T, Sotoodeh S, Hanusch T (2007) Combining photogrammetry and laser scanning for the recording and modelling of the late intermediate period site of Pinchango Alto, Palpa, Peru. J Archaeol Sci 34(10):1702–1712. https://doi.org/10.1016/j.jas.2006.12.008

    Article  Google Scholar 

  • Lichti DD (2007) Error modelling, calibration and analysis of an AM-CW terrestrial laser scanner system. ISPRS J Photogramm Remote Sens 61(5):307–324. https://doi.org/10.1016/j.isprsjprs.2006.10.004

    Article  Google Scholar 

  • Lichti DD (2010) Terrestrial laser scanner self-calibration: correlation sources and their mitigation. ISPRS J Photogramm Remote Sens 65(1):93–102. https://doi.org/10.1016/j.isprsjprs.2009.09.002

    Article  Google Scholar 

  • Lichti DD, Skaloud J (2010) Registration and calibration. In: Vosselman G, Maas HG (eds) Airborne and terrestrial laser scanning, 1st edn. Whittles Publishing, Dunbeath, pp 83–134

    Google Scholar 

  • Lindenbergh R (2010) Engineering applications. In: Vosselman G, Maas HG (eds) Airborne and terrestrial laser scanning, 1st edn. Whittles Publishing, Dunbeath, UK, pp 237–269

    Google Scholar 

  • Maas HG 2000 Least-squares matching with airborne laserscanning data in a TIN structure. In: Schenk T, Vosselman G (eds) ISPRS archives—volume XXXIII part B3, proceedings XIX ISPRS conference, Amsterdam, the Netherlands, 16–26 July 2000. pp 548–555

    Google Scholar 

  • MÃ¥rtensson S-G, Reshetyuk Y, Jivall L (2012) Measurement uncertainty in network RTK GNSS-based positioning of a terrestrial laser scanner. J Appl Geod 6(1):25–32. https://doi.org/10.1515/jag-2011-0013

    Google Scholar 

  • Masuda T, Yamada Y, Kuchitsu N, Ikeuchi K (2010) Illumination simulation for archaeological investigation. In: Digitally archiving cultural objects. Springer, New York, pp 419–439. https://doi.org/10.1007/978-0-387-75807_20

    Google Scholar 

  • Moeyersons J, Vermeersch PM, Van Peer P (2002) Dry cave deposits and their palaeoenvironmental significance during the last 115 ka, Sodmein Cave, Red Sea Mountains, Egypt. Quat Sci Rev 21(7):837–851. https://doi.org/10.1016/S0277-3791(01)00132-9

    Article  Google Scholar 

  • Nothegger C, Dorninger P (2009) 3D filtering of high-resolution terrestrial laser scanner point clouds for cultural heritage documentation. Photogramm Fernerkun 1:53–63. https://doi.org/10.1127/0935-1221/2009/0006

    Article  Google Scholar 

  • Nunez Andres MA, Buill Pozuelo F (2009) Evolution of the architectural and heritage representation. Landsc Urban Plan 91(2):105–112. https://doi.org/10.1016/j.landurbplan.2008.12.006

    Article  Google Scholar 

  • Ortiz J, Gil ML, Martínez S, Rego T, Meijide G (2013) Three-dimensional modelling of archaeological sites using close-range automatic correlation photogrammetry and low-altitude imagery. Archaeol Prospect 20(3):205–217. https://doi.org/10.1002/arp.1457

    Article  Google Scholar 

  • Pfeifer N, Mandlburger G (2009) Lidar data filtering and DTM generation. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning. Taylor & Francis Group, Boca Raton, FL, pp 308–333

    Google Scholar 

  • Plets G, Gheyle W, Verhoeven G, De Reu J, Bourgeois J, Verhegge J, Stichelbaut B (2012) Three-dimensional recording of archaeological remains in the Altai mountains. Antiquity 86(333):884–897

    Article  Google Scholar 

  • Puttonen E, Lehtomäki M, Kaartinen H, Zhu L, Kukko A, Jaakkola A (2013) Improved sampling for terrestrial and mobile laser scanner point cloud data. Remote Sens 5(4):1754–1773. https://doi.org/10.3390/rs5041754

    Article  Google Scholar 

  • Remondino F (2011) Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sens 3(6):1104–1138. https://doi.org/10.3390/rs3061104

    Article  Google Scholar 

  • Remondino F, Rizzi A (2010) Reality-based 3D documentation of natural and cultural heritage sites—techniques, problems, and examples. Appl Geomat 2(3):85–100. https://doi.org/10.1007/s12518-010-0025-x

    Article  Google Scholar 

  • Rodriguez-Gonzalvez P, Mancera-Taboada J, Gonzalez-Aguilera D, Munoz-Nieto A, Armesto J (2012) A hybrid approach to create an archaeological visualization system for a Palaeolithic Cave. Archaeometry 54(3):565–580. https://doi.org/10.1111/j.1475-4754.2011.00638.x

    Article  Google Scholar 

  • Rua H, Alvito P (2011) Living the past: 3D models, virtual reality and game engines as tools for supporting archaeology and the reconstruction of cultural heritage—the case-study of the Roman villa of Casal de Freiria. J Archaeol Sci 38(12):3296–3308. https://doi.org/10.1016/j.jas.2011.07.015

    Article  Google Scholar 

  • Rüther H, Chazan M, Schroeder R, Neeser R, Held C, Walker SJ, Matmon A, Horwitz LK (2009) Laser scanning for conservation and research of African cultural heritage sites: the case study of Wonderwerk Cave, South Africa. J Archaeol Sci 36(9):1847–1856. https://doi.org/10.1016/j.jas.2009.04.012

    Article  Google Scholar 

  • Rüther H, Bhurtha R, Held C, Schroder R, Wessels S (2012) Laser scanning in heritage documentation: the scanning pipeline and its challenges. Photogramm Eng Remote Sens 78(4):309–316

    Article  Google Scholar 

  • Å tular B, Kokalj Ž, OÅ¡tir K, Nuninger L (2012) Visualization of lidar-derived relief models for detection of archaeological features. J Archaeol Sci 39(11):3354–3360. https://doi.org/10.1016/j.jas.2012.05.029

    Article  Google Scholar 

  • van Oosterom P, Martinez-Rubi O, Ivanova M, Horhammer M, Geringer D, Ravada S, Tijssen T, Kodde M, Gonçalves R (2015) Massive point cloud data management: design, implementation and execution of a point cloud benchmark. Comput Graph 49:92–125. https://doi.org/10.1016/j.cag.2015.01.007

    Article  Google Scholar 

  • Vosselman G, Klein R (2010) Visualisation and structuring of point clouds. In: Vosselman G, Maas HG (eds) Airborne and terrestrial laser scanning, 1st edn. Whittles Publishing, Dunbeath, UK, pp 45–82

    Google Scholar 

  • Ward GJ (1994) The RADIANCE lighting simulation and rendering system. Paper presented at the proceedings of the 21st annual conference on computer graphics and interactive techniques

    Google Scholar 

  • Wehr A (2009) Lidar systems and calibration. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning. Taylor & Francis Group, Boca Raton, FL, pp 129–172

    Google Scholar 

  • Xu Z, Wu L, Shen Y, Li F, Wang Q, Wang R (2014) Tridimensional reconstruction applied to cultural heritage with the use of camera-equipped UAV and terrestrial laser scanner. Remote Sens 6(11):10413–10434. https://doi.org/10.3390/rs61110413

    Article  Google Scholar 

  • Zalama E, Gomez-Garcia-Bermejo J, Llamas J, Medina R (2011) An effective texture mapping approach for 3D models obtained from laser scanner data to building documentation. J Comput Aided Civ Infrastruct Eng 26(5):381–392. https://doi.org/10.1111/j.1467-8667.2010.00699.x

    Article  Google Scholar 

  • Zielhofer C, Clare L, Rollefson G, Wachter S, Hoffmeister D, Bareth G, Roettig C, Bullmann H, Schneider B, Berke H, Weninger B (2012) The decline of the early Neolithic population center of ‘Ain Ghazal and corresponding earth-surface processes, Jordan Rift Valley. Quat Res 78(3):427–441. https://doi.org/10.1016/j.yqres.2012.08.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Hoffmeister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoffmeister, D. (2018). 3D Laser Scanning for Geoarchaelogical Documentation and Analysis. In: Siart, C., Forbriger, M., Bubenzer, O. (eds) Digital Geoarchaeology. Natural Science in Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-25316-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25316-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25314-5

  • Online ISBN: 978-3-319-25316-9

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics