Skip to main content

Sugar and Glycerol Transport in Saccharomyces cerevisiae

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 892)

Abstract

In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition.

Keywords

  • HXT
  • Prion
  • PMA1
  • Post-translational modification
  • Stress

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25304-6_6
  • Chapter length: 44 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-25304-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7

References

  • Abu Irqeba A, Li Y, Panahi M et al (2014) Regulating global sumoylation by a MAP kinase Hog1 and its potential role in osmo-tolerance in yeast. PLoS One 9(2):e87306. doi:10.1371/journal.pone.0087306

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Ahmadpour D, Geijer C, Tamas MJ et al (2014) Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins. Biochim Biophys Acta 1840:1482–1491

    CAS  PubMed  CrossRef  Google Scholar 

  • Ahuatzi D, Riera A, Pelaez R et al (2007) Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution. J Biol Chem 282:4485–4493

    CAS  PubMed  CrossRef  Google Scholar 

  • Alberti S, Halfmann R, King O et al (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Alberti S, Halfmann R, Lindquist S (2010) Biochemical, cell biological, and genetic assays to analyze amyloid and prion aggregation in yeast. Methods Enzymol 470:709–734

    CAS  PubMed  CrossRef  Google Scholar 

  • Albertyn J, Hohmann S, Thevelein JM et al (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Alepuz PM, Cunningham KW, Estruch F (1997) Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Mol Microbiol 26:91–98

    CAS  PubMed  CrossRef  Google Scholar 

  • Alves SL, Herberts RA, Hollatz C et al (2008) Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease. Appl Environ Microbiol 74:1494–1501

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Alves SL, Thevelein JM, Stambuk BU (2014) Expression of Saccharomyces cerevisiae α-glucosidase transporters under different growth conditions. Braz J Chem Eng 31:1–8

    CAS  CrossRef  Google Scholar 

  • Anjos J, Rodrigues de Sousa H, Roca C et al (2013) Fsy1, the sole hexose proton transporter characterized in Saccharomyces yeasts exhibits a variable fructose:H+ stoichiometry. Biochim Biophys Acta 1828:201–207

    CAS  PubMed  CrossRef  Google Scholar 

  • Ashe MP, De Long SK, Sachs AB (2000) Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell 11:833–848

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ashrafi K, Lin SS, Manchester JK et al (2000) Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev 14:1872–1885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Babazadeh R, Furukawa T, Hohmann S et al (2014) Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation. Sci Rep 4:4697. doi:10.1038/srep04697

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Beck ZT, Cloutier SC, Schipma MJ et al (2014) Regulation of glucose-dependent gene expression by the RNA helicase Dbp2 in Saccharomyces cerevisiae. Genetics 198:1001–1014

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Becker JU, Betz A (1972) Membrane transport as controlling pacemaker of glycolysis in Saccharomyces carlsbergensis. Biochim Biophys Acta 274:584–597

    CAS  PubMed  CrossRef  Google Scholar 

  • Belinchon MM, Gancedo JM (2007) Different signalling pathways mediate glucose induction of SUC2, HXT1 and pyruvate decarboxylase in yeast. FEMS Yeast Res 7:40–47

    CAS  PubMed  CrossRef  Google Scholar 

  • Bendrioua L, Smedh M, Almquist J et al (2014) Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels. J Biol Chem 289:12863–12875

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bermejo C, Haerizadeh F, Sadoine MSC et al (2013) Differential regulation of glucose transport activity in yeast by specific cAMP signatures. Biochem J 452:489–497

    CAS  PubMed  CrossRef  Google Scholar 

  • Bisson LF, Neigeborn L, Carlson M et al (1987) The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae. J Bacteriol 169:1656–1662

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bisson LF, Coons DM, Kruckeberg AL et al (1993) Yeast sugar transporters. Crit Rev Biochem Mol Biol 28:259–308

    CAS  PubMed  CrossRef  Google Scholar 

  • Bleve G, Zacheo G, Cappello MS, Dellaglio F, Grieco F (2005) Subcellular localization and functional expression of the glycerol uptake protein 1 (GUP1) of Saccharomyces cerevisiae tagged with green fluorescent protein. Biochem J 390:145–155

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111

    CAS  PubMed  CrossRef  Google Scholar 

  • Bosch D, Johansson M, Ferndahl C et al (2007) Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux. FEMS Yeast Res 8:10–25

    PubMed  CrossRef  CAS  Google Scholar 

  • Bosson R, Jaquenoud M, Conzelmann A (2006) GUP1 of Saccharomyces cerevisiae encodes an O-acyltransferase involved in remodeling of the GPI anchor. Mol Biol Cell 17:2636–2645

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Boulton RB, Singleton VS, Bisson LF et al (1996) Principles and practices of winemaking. Chapman Hall, New York

    CrossRef  Google Scholar 

  • Boveris A (1984) Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol 105:429–435

    CAS  PubMed  CrossRef  Google Scholar 

  • Brewster JL, de Valoir T, Dwyer ND et al (1993) An osmosensing signal transduction pathway in yeast. Science 259:1760–1763

    CAS  PubMed  CrossRef  Google Scholar 

  • Brion C, Ambroset C, Sanchez I et al (2013) Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks. BMC Genomics 14:681. doi:10.1186/1471-2164-14-681

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Brown JC, Lindquist S (2009) A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes Dev 23:2320–2332

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Brown CJ, Todd KM, Rosenzweig RF (1998) Multiple duplications of yeast hexose transport genes in response to selection in a glucose –limited environment. Mol Biol Evol 15:931–942

    CAS  PubMed  CrossRef  Google Scholar 

  • Buziol S, Warth L, Magario I et al (2008) Dynamic response of the expression of hxt1, hxt5 and hxt7 transport proteins in Saccharomyces cerevisiae to perturbations in the extracellular glucose concentration. J Biotechnol 134:203–210

    CAS  PubMed  CrossRef  Google Scholar 

  • Cakir T, Kirdar B, Onsan ZI et al (2007) Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. BMC Syst Biol 1:18. doi:10.1186/1752-0509-1-18

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Cannon JF, Tatchell K (1987) Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol Cell Biol 7:2653–2663

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Causton HC, Ren B, Koh SS et al (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Celenza JL, Carlson M (1984) Structure and expression of the SNF1 gene of Saccharomyces cerevisiae. Mol Cell Biol 4:54–60

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Celenza JL, Marshall-Carlson L, Carlson M (1988) The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein. Proc Natl Acad Sci U S A 85:2130–2134

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Celenza JL, Eng FJ, Carlson M (1989) Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Mol Cell Biol 9:5045–5054

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Charron MJ, Dubin RA, Michels CA (1986) Structural and functional analysis of the MAL1 locus of Saccharomyces cerevisiae. Mol Cell Biol 6:3891–3899

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Charron MJ, Read E, Hunt SR et al (1989) Molecular evolution of the telomere-associated MAL loci of Saccharomyces. Genetics 122:307–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen RE, Thorner J (2007) Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1773:1311–1340

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chow TH, Sollitti P, Marmur J (1989) Structure of the multigene family of MAL loci in Saccharomyces. Mol Gen Genet 217:60–69

    CAS  PubMed  CrossRef  Google Scholar 

  • Coelho MA, Gonçalves C, Sampaio JP et al (2012) Extensive intra-kingdom horizontal gene transfer converging on a fungal fructose transporter gene. PLOS Genet 9(6):e100358. doi:10.1371/journal.pgen.1003587

    Google Scholar 

  • Colombo S, Ronchetti D, Thevelein JM et al (2004) Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae. J Biol Chem 279:46715–46722

    CAS  PubMed  CrossRef  Google Scholar 

  • Compagno C, Dashko S, Piškur J (2014) Introduction to carbon metabolism in yeast. In: Piškur J, Compagno C (eds) Molecular mechanisms in yeast carbon metabolism. Springer, Heidelberg, pp 1–19

    Google Scholar 

  • Conlan RS, Gounalaki N, Hatzis P et al (1999) The Tup1-Cyc8 protein complex can shift from a transcriptional co-repressor to a transcriptional co-activator. J Biol Chem 274:205–210

    CAS  PubMed  CrossRef  Google Scholar 

  • Conrad M, Schothorst J, Kankipati HN et al (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38:254–299

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Coons DM, Vagnoli P, Bisson LF (1997) The C-terminal domain of Snf3p is sufficient to complement the growth defect of snf3 null mutations in Saccharomyces cerevisiae: SNF3 functions in glucose recognition. Yeast 13:9–20

    CAS  PubMed  CrossRef  Google Scholar 

  • Cousseu FEM, Alves SL, Trichez D et al (2013) Characterization of maltotriose transport from the Saccharomyces eubayanus subgenome of the hybrid Saccharomyces pastorianus lager brewing yeast strain Weihenstephan 34170. Lett Appl Microbiol 56:21–29

    CrossRef  CAS  Google Scholar 

  • Daran-Lapujade P, Jansen MLA, Darant JM et al (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. J Biol Chem 279:9125–9138

    CAS  PubMed  CrossRef  Google Scholar 

  • De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156

    PubMed  CrossRef  Google Scholar 

  • De la Torre-Ruiz MA, Pujol N, Sundaran V (2015) Coping with oxidative stress. The yeast model. Curr Drug Targets 16(1):2–12

    PubMed  CrossRef  CAS  Google Scholar 

  • De Vit MJ, Waddle J, Johnston M (1997) Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8:1603–1618

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Diaz-Ruiz R, Rigoulet M, Devin A (2011) Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta 1807:568–576

    CAS  PubMed  CrossRef  Google Scholar 

  • Diderich JA, Schepper M, van Hoek P et al (1999) Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 274:15350–15359

    CAS  PubMed  CrossRef  Google Scholar 

  • DiSalvo S, Serio TR (2011) Insights into prion biology: integrating a protein misfolding pathway with its cellular environment. Prion 5:76–83

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dlugai S, Hippler S, Wieczorke R et al (2001) Glucose-dependent and-independent signalling functions of the yeast glucose sensor Snf3. FEBS Lett 505:389–392

    CAS  PubMed  CrossRef  Google Scholar 

  • Dupres V, Alsteens D, Wilk S et al (2009) The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nat Chem Biol 5:857–862

    CAS  PubMed  CrossRef  Google Scholar 

  • Duskova M, Borovikova D, Herynkova P et al (2015) The role of glycerol transporters in yeast cells in various physiological and stress conditions. FEMS Microbiol Lett 362:1–8

    PubMed  CrossRef  Google Scholar 

  • Duval EH, Alves SL Jr, Dunn B et al (2010) Microarray karyotyping of maltose-fermenting yeasts with differing maltotriose utilization profiles reveals copy number variation in genes involved in maltose and maltotriose utilization. J Appl Microbiol 109:248–259

    CAS  PubMed  Google Scholar 

  • Eddy AA, Barnett JA (2007) A history of research on yeasts II. The study of solute transport: the first 90 years, simple and facilitated diffusion. Yeast 24:1023–1059

    CAS  PubMed  CrossRef  Google Scholar 

  • Elbing K, Larsson C, Bill RM et al (2004) Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae. Appl Environ Microbiol 70:5323–5330

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ellis J (1987) Proteins as molecular chaperones. Nature 328:378–379

    CAS  PubMed  CrossRef  Google Scholar 

  • Eraso P, Mazon MJ, Portillo F (2006) Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochim Biophys Acta 1758:164–170

    CAS  PubMed  CrossRef  Google Scholar 

  • Eraso P, Mazon MJ, Posas F et al (2011) Gene expression profiling of yeasts overexpressing wild type or misfolded Pma1 variants reveals activation of the Hog1 MAPK pathway. Mol Microbiol 79:1339–1352

    CAS  PubMed  CrossRef  Google Scholar 

  • Estrada E, Agostinis P, Vandenheede JR et al (1996) Phosphorylation of yeast plasma membrane H+-ATPase by casein kinase I. J Biol Chem 271:32064–32072

    CAS  PubMed  CrossRef  Google Scholar 

  • Ferreira C, Lucas C (2007) Glucose repression over Saccharomyces cerevisiae glycerol/H+ symporter gene STL1 is overcome by high temperature. FEBS Lett 581:1923–1927

    CAS  PubMed  CrossRef  Google Scholar 

  • Ferreira C, van Voorst F, Martins A et al (2005) A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae. Mol Biol Cell 16:2068–2076

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ferreira C, Silva S, Faria-Oliveira F et al (2010) Candida albicans virulence and drug-resistance requires the O-acyltransferase Gup1p. BMC Microbiol 10:238. doi:10.1186/1471-2180-10-238

    Google Scholar 

  • Ferrer-Dalmau J, Randez-Gil F, Marquina M et al (2015) Protein kinase Snf1 is involved in the proper regulation of the unfolded protein response in Saccharomyces cerevisiae. Biochem J 468(1):33–47. doi:10.1042/BJ20140734

    Google Scholar 

  • Flick KM, Spielewoy N, Kalashnikova TI et al (2003) Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol Biol Cell 14:3230–3241

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Ann Rev Biochem 70:603–647

    CAS  PubMed  CrossRef  Google Scholar 

  • Galeote V, Novo M, Salema-Oom M et al (2010) FSY1 a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H+ symporter. Microbiology 156:3754–3761

    CAS  PubMed  CrossRef  Google Scholar 

  • Gancedo JM (2008) The early steps of glucose signaling in yeast. FEMS Microbiol Rev 32:673–704

    CAS  PubMed  CrossRef  Google Scholar 

  • Gancedo C, Serrano R (1989) Energy-yielding metabolism in yeasts. In: Rose AH, Harrison JS (eds) The yeasts. Academic, London, pp 205–259

    Google Scholar 

  • Garcia DM, Jarosz DF (2014) Rebels with a cause: molecular features and physiological consequences of yeast prions. FEMS Yeast Res 14:136–147

    CAS  PubMed  CrossRef  Google Scholar 

  • Gasch A (2003) The environmental stress response: a common yeast response to diverse environmental stresses. In: Hohmann S, Mager W (eds) Yeast stress responses, vol 1. Topics in current genetics. Springer, Berlin/Heidelberg, pp 11–70

    Google Scholar 

  • Gasch AP, Spellman PT, Kao CM et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Geladé R, Van de Velde S, Van Dijck P et al (2003) Multi-level response of the yeast genome to glucose. Genome Biol 4:233–233

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ghillebert R, Swinnen E, Wen J et al (2011) The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J 278:3978–3990

    CAS  PubMed  CrossRef  Google Scholar 

  • Gong Y, Kakihara Y, Krogan N et al (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275. doi:10.1038/msb.2009.26

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Grandier-Vazeille X, Bathany K, Chaignepain S et al (2001) Yeast mitochondrial dehydrogenases are associated in a supramolecular complex. Biochemistry 40:9758–9769

    CAS  PubMed  CrossRef  Google Scholar 

  • Grauslund M, Ronnow B (2000) Carbon source-dependent transcriptional regulation of the mitochondrial glycerol-3-phosphate dehydrogenase gene, GUT2, from Saccharomyces cerevisiae. Can J Microbiol 46:1096–1100

    CAS  PubMed  CrossRef  Google Scholar 

  • Gray JV, Petsko GA, Johnston GC et al (2004) “Sleeping beauty”: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68:187–206

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Greatrix BW, van Vuuren HJJ (2006) Expression of the HXT13, HXT15 and HXT17 genes in Saccharomyces cerevisiae and stabilization of the HXT1 gene transcript by sugar-induced osmotic stress. Curr Genet 49:205–217

    CAS  PubMed  CrossRef  Google Scholar 

  • Guillaume C, Delobel P, Sablayrolles JM et al (2007) Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: a mutated HXT3 allele enhances fructose fermentation. Appl Environ Microbiol 73:2432–2439

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hahn JS, Thiele DJ (2004) Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem 279:5169–5176

    CAS  PubMed  CrossRef  Google Scholar 

  • Halfmann R, Lindquist S (2010) Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 330:629–632

    CAS  PubMed  CrossRef  Google Scholar 

  • Halfmann R, Jarosz DF, Jones SK et al (2012) Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482:363–368

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hardy TA, Huang D, Roach PJ (1994) Interactions between cAMP-dependent and SNF1 protein kinases in the control of glycogen accumulation in Saccharomyces cerevisiae. J Biol Chem 269:27907–27913

    CAS  PubMed  Google Scholar 

  • Haurie V, Perrot M, Mini T et al (2001) The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 276:76–85

    CAS  PubMed  CrossRef  Google Scholar 

  • Hedbacker K, Carlson M (2008) SNF1/AMPK pathways in yeast. Front Biosci 13:2408–2420

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Henderson CM, Lozada-Contreras M, Jiranek V et al (2013) Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains. Appl Environ Microbiol 79:91–104

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45

    CAS  PubMed  CrossRef  Google Scholar 

  • Holmes DL, Lancaster AK, Lindquist S et al (2013) Heritable remodeling of yeast multicellularity by an environmentally responsive prion. Cell 153:153–165

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Holsbeeks I, Lagatie O, Van Nuland A et al (2004) The eukaryotic plasma membrane as a nutrient-sensing device. Trends Biochem Sci 29:556–564

    CAS  PubMed  CrossRef  Google Scholar 

  • Holst B, Lunde C, Lages F et al (2000) GUP1 and its close homologue GUP2, encoding multimembrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae. Mol Microbiol 37:108–124

    CAS  PubMed  CrossRef  Google Scholar 

  • Honigberg SM, Lee RH (1998) Snf1 kinase connects nutritional pathways controlling meiosis in Saccharomyces cerevisiae. Mol Cell Biol 18:4548–4555

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Horák J (2013) Regulations of sugar transporters: insights from yeast. Curr Genet 59:1–31

    PubMed  CrossRef  CAS  Google Scholar 

  • Hunter T, Plowman GD (1997) The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22:18–22

    Google Scholar 

  • Jansen MLA, De Winde JH, Pronk JT (2002) Hxt-carrier-mediated glucose efflux upon exposure of Saccharomyces cerevisiae to excess maltose. Appl Environ Microbiol 68:4259–4265

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jarosz DF, Brown JC, Walker GA et al (2014) Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell 158:1083–1093

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jiang R, Carlson M (1996) Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes & Dev 10:3105–3115

    Google Scholar 

  • Jiang and Carlson 1997 in the text is incorrect (line 612, 889) it is: Jiang R, Carlson M (1996) Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes & Devel 10: 3105–3115

    Google Scholar 

  • Johnston M, Kim J (2005) Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem Soc Trans 33:247–252

    CAS  PubMed  CrossRef  Google Scholar 

  • Jouandot D 2nd, Roy A, Kim JH (2011) Functional dissection of the glucose signaling pathways that regulate the yeast glucose transporter gene (HXT) repressor Rgt1. J Cell Biochem 112:3268–3275

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kaniak A, Xue Z, Macool D, Kim JH et al (2004) Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot cell 3:221–231

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Karpel JE, Place WR, Bisson LF (2008) Analysis of the major hexose transporter genes in wine strains of Saccharomyces cerevisiae. Am J Enol Vitic 59:265–275

    CAS  Google Scholar 

  • Kasahara T, Maeda M, Ishiguro M et al (2007) Identification by comprehensive chimeric analysis of a key residue responsible for high affinity glucose transport by yeast HXT2. J Biol Chem 282:13146–13150

    CAS  PubMed  CrossRef  Google Scholar 

  • Keleher CA, Redd MJ, Schultz J, Carlson M et al (1992) Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68:709–719

    CAS  PubMed  CrossRef  Google Scholar 

  • Kim JH (2009) DNA-binding properties of the yeast Rgt1 repressor. Biochimie 91:300–303

    CAS  PubMed  CrossRef  Google Scholar 

  • Kim JH, Johnston M (2006) Two glucose-sensing pathways converg on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae. J Biol Chem 281:26144–26149

    CAS  PubMed  CrossRef  Google Scholar 

  • Kim JH, Polish J, Johnston M (2003) Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1. Mol Cell Biol 23:5208–5216

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kim JH, Brachet V, Moriya H, Johnston M (2006) Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae. Eukaryot Cell 5:167–173

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kim JH, Roy A, Jouandot D 2nd, Cho KH (2013) The glucose signaling network in yeast. Biochim Biophys Acta 1830:5204–5210

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Klipp E, Nordlander B, Kruger R et al (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23:975–982

    CAS  PubMed  CrossRef  Google Scholar 

  • Klockow C, Stahl F, Scheper T et al (2008) In vivo regulation of glucose transporter genes at glucose concentrations between 0 and 500 mg/L in a wild type of Saccharomyces cerevisiae. J Biotechnol 135:161–167

    CAS  PubMed  CrossRef  Google Scholar 

  • Kraakman L, Lemaire K, Ma P, Teunissen AWRH et al (1999) A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32:1002–1012

    CAS  PubMed  CrossRef  Google Scholar 

  • Krampe S, Stamm O, Hollenberg CP et al (1998) Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis. FEBS Lett 441:343–347

    CAS  PubMed  CrossRef  Google Scholar 

  • Kresnowati MT, van Winden WA, Almering MJH et al (2006) When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2: n/a. doi:10.1038/msb4100083

  • Kriel J, Haesendonckx S, Rubio-Texeira M et al (2011) From transporter to transceptor: signaling from transporters provokes re-evaluation of complex trafficking and regulatory controls: endocytic internalization and intracellular trafficking of nutrient transceptors may, at least in part, be governed by their signaling function. BioEssays 33:870–879

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283–292

    CAS  PubMed  CrossRef  Google Scholar 

  • Kruckeberg AL, Bisson LF (1990) The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport. Mol Cell Biol 10:5903–5913

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kuchin S, Treich I, Carlson M (2000) A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme. Proc Natl Acad Sci U S A 97:7916–7920

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kuchin S, Vyas VK, Carlson M (2002) Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22:3994–4000

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kuttykrishnan S, Sabina J, Langton LL et al (2010) A quantitative model of glucose signaling in yeast reveals an incoherent feed forward loop leading to a specific, transient pulse of transcription. Proc Natl Acad Sci U S A 107:16743–16748

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lafuente MJ, Gancedo C, Jauniaux JC et al (2000) Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae. Mol Microbiol 35:161–172

    CAS  PubMed  CrossRef  Google Scholar 

  • Lakshmanan J, Mosley AL, Ozcan S (2003) Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1. Curr Genet 44:19–25

    CAS  PubMed  CrossRef  Google Scholar 

  • Larsson C, Pahlman IL, Ansell R et al (1998) The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14:347–357

    CAS  PubMed  CrossRef  Google Scholar 

  • Leandro MJ, Fonseca C, Gonçalves P (2009) Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res 9:511–525

    CAS  PubMed  CrossRef  Google Scholar 

  • Lecchi S, Nelson CJ, Allen KE et al (2007) Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation. J Biol Chem 282:35471–35481

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee ME, Singh K, Snider J et al (2011) The Rho1 GTPase acts together with a vacuolar glutathione S-conjugate transporter to protect yeast cells from oxidative stress. Genetics 188:859–870

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lee YJ, Jeschke GR, Roelants FM et al (2012) Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress. Mol Cell Biol 32:4705–4717

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lewis DA, Bisson LF (1991) The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters. Mol Cell Biol 11:3804–3813

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Li L, Kowal AS (2012) Environmental regulation of prions in yeast. PLoS Pathog 8(11):e1002973. doi:10.1371/journal.ppat.1002973

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Liang H, Gaber RF (1996) A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6. Mol Biol Cell 7:1953–1966

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lo WS, Duggan L, Emre NC et al (2001) Snf1-a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293:1142–1146

    CAS  PubMed  CrossRef  Google Scholar 

  • Luyten K, Albertyn J, Skibbe WF et al (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luyten K, Riou D, Blondin B (2002) The hexose transporters of Saccharomyces cerevisiae play different roles during enological fermentation. Yeast 19:713–726

    CAS  PubMed  CrossRef  Google Scholar 

  • Maier A, Völker B, Boles E et al (2002) Characterization of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6 Hxt7 or Gal2 transporters. FEMS Yeast Res 3:539–550

    Google Scholar 

  • Malave TM, Dent SY (2006) Transcriptional repression by Tup1-Ssn6. Biochem Cell Biol 84(4):437–443

    CAS  PubMed  CrossRef  Google Scholar 

  • Marshall-Carlson L, Neigeborn L, Coons D et al (1991) Dominant and recessive suppressors that restore glucose transport in a yeast snf3 mutant. Genetics 128:505–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Pastor MT, Marchler G, Schuller C et al (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason AB, Allen KE, Slayman CW (2014) C-terminal truncations of the Saccharomyces cerevisiae PMA1 H+-ATPase have major impacts on protein conformation, trafficking, quality control, and function. Eukaryot Cell 13:43–52

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mayordomo I, Estruch F, Sanz P (2002) Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes. J Biol Chem 277:35650–35656

    CAS  PubMed  CrossRef  Google Scholar 

  • McCartney RR, Schmidt MC (2001) Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biol Chem 276:36460–36466

    CAS  PubMed  CrossRef  Google Scholar 

  • McGlinchey RP, Kryndushkin D, Wickner RB (2011) Suicidal [PSI+] is a lethal yeast prion. Proc Natl Acad Sci U S A 108:5337–5341

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Moriya H, Johnston M (2004) Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinas I. Proc Natl Acad Sci U S A 101:1572–1577

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mosley AL, Lakshmanan J, Aryal BK et al (2003) Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator. J Biol Chem 278:10322–10327

    CAS  PubMed  CrossRef  Google Scholar 

  • Naito C, Ito H, Oshiro T et al (2014) A new pma1 mutation identified in a chronologically long-lived fission yeast mutant. FEBS Open Bio 4:829–833. doi:10.1016/j.fob.2014.09.006

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nayak V, Zhao K, Wyce A et al (2006) Structure and dimerization of the kinase domain from yeast Snf1, a member of the Snf1/AMPK protein family. Structure 14:477–485

    CAS  PubMed  CrossRef  Google Scholar 

  • Neigeborn L, Carlson M (1984) Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108:845–858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norbeck J, Pahlman AK, Akhtar N et al (1996) Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem 271:13875–13881

    CAS  PubMed  CrossRef  Google Scholar 

  • Novo M, Bigey F, Beyne E et al (2009) Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A 106:16333–16338

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nozawa A, Takano J, Kobayashi M et al (2006) Roles of BOR1, DUR3, and FPS1 in boron transport and tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 262:216–222

    CAS  PubMed  CrossRef  Google Scholar 

  • Oliveira AP, Sauer U (2012) The importance of post-translational modifications in regulating Saccharomyces cerevisiae metabolism. FEMS Yeast Res 12:104–117

    CAS  PubMed  CrossRef  Google Scholar 

  • Oliveira R, Lages F, Silva-Graca M et al (2003) Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae: artefacts and re-definitions. Biochim Biophys Acta 1613:57–71

    CAS  PubMed  CrossRef  Google Scholar 

  • Ostling J, Carlberg M, Ronne H (1996) Functional domains in the Mig1 repressor. Mol Cell Biol 16:753–761

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Otterstedt K, Larsson C, Bill RM et al (2004) Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO Rep 5:431–443

    CrossRef  CAS  Google Scholar 

  • Ozcan S, Johnston M (1995) Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol 15:1564–1572

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ozcan S, Johnston M (1996) Two different repressors collaborate to restrict expression of the yeast glucose transporter genes HXT2 and HXT4 to low levels of glucose. Mol Cell Biol 16:5536–5545

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ozcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozcan S, Dover J, Rosenwald AG et al (1996a) Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci U S A 93:12428–12432

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ozcan S, Leong T, Johnston M (1996b) Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription. Mol Cell Biol 16:6419–6426

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Papamichos-Chronakis M, Conlan RS, Gounalaki N, Copf T, Tzamarias D (2000) Hrs1/Med3 Is a Cyc8-Tup1 Corepressor Target in the RNA Polymerase II Holoenzyme. J Biol Chem 275:8397–8403

    Google Scholar 

  • Papamichos-Chronakis M, Gligoris T, Tzamarias D (2004) The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. EMBO Rep 5:368–372

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Park JI, Collinson EJ, Grant CM et al (2005) Rom2p, the Rho1 GTP/GDP exchange factor of Saccharomyces cerevisiae, can mediate stress responses via the Ras-cAMP pathway. J Biol Chem 280:2529–2535

    CAS  PubMed  CrossRef  Google Scholar 

  • Pasula S, Jouandot D, Kim JH (2007) Biochemical evidence for glucose-independent induction of HXT expression in Saccharomyces cerevisiae. FEBS Lett 581:3230–3234

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Pasula S, Chakraborty S, Choi JH et al (2010) Role of casein kinase 1 in the glucose sensor-mediated signaling pathway in yeast. BMC Cell Biol 11:17

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Pavlik P, Simon M, Schuster T et al (1993) The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterization. Curr Genet 24:21–25

    CAS  PubMed  CrossRef  Google Scholar 

  • Peeters K, Thevelein JM (2014) Glucose sensing and signal transduction in Saccharomyces cerevisiae. In: Piškur J, Compagno C (eds) Molecular mechanisms in yeast carbon metabolism. Springer, Heidelberg, pp 21–56

    CrossRef  Google Scholar 

  • Peeters T, Louwet W, Gelade R et al (2006) Kelch-repeat proteins interacting with the Galpha protein Gpa2 bypass adenylate cyclase for direct regulation of protein kinase A in yeast. Proc Natl Acad Sci U S A 103:13034–13039

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Perez M, Lutent K, Michel R et al (2005) Analysis of Saccharomyces cerevisiae hexose carrier expression during wine fermentation: both low- and high-affinity Hxt transporters are expressed. FEMS Yeast Res 5:351–361

    CAS  PubMed  CrossRef  Google Scholar 

  • Petkova MI, Pujol-Carrion N, de la Torre-Ruiz MA (2012) Mtl1 O-mannosylation mediated by both Pmt1 and Pmt2 is important for cell survival under oxidative conditions and TOR blockade. Fungal Genet Biol 49:903–914

    CAS  PubMed  CrossRef  Google Scholar 

  • Philips J, Herskowitz I (1997) Osmotic balance regulates cell fusion during mating in Saccharomyces cerevisiae. J Cell Biol 138:961–974

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Pirkkala L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131

    CAS  PubMed  CrossRef  Google Scholar 

  • Place WR, Bisson LF (2013) Identification of HXT7 as a suppressor of the snf3 growth defect in wine and wild-type strains of Saccharomyces cerevisiae. Am J Enol Vitic 64:251–257

    CAS  CrossRef  Google Scholar 

  • Polish JA, Kim JH, Johnston M (2005) How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose. Genetics 169:583–594

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ramakrishnan V, Theodoris G, Bisson LF (2006) Loss of IRA2 suppresses the growth defect on low glucose caused by the snf3 mutation in Saccharomyces cerevisiae. FEMS Yeast Res 7:67–77

    CrossRef  CAS  Google Scholar 

  • Reifenberger E, Freidel K, Ciriacy M (1995) Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of hexose transporters on glycolytic flux. Mol Microbiol 16:157–167

    CAS  PubMed  CrossRef  Google Scholar 

  • Reifenberger E, Boles E, Ciriacy M (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333

    CAS  PubMed  CrossRef  Google Scholar 

  • Rødkær SV, Færgeman NJ (2014) Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae. FEMS Yeast Res 14:683–696

    PubMed  CrossRef  CAS  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and –signaling mechanisms in yeast. FEMS Yeast Res 2:183–201

    CAS  PubMed  CrossRef  Google Scholar 

  • Ronnow B, Kielland-Brandt MC (1993) GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae. Yeast 9:1121–1130

    CAS  PubMed  CrossRef  Google Scholar 

  • Roy A, Kim JH (2014) Endocytosis and vacuolar degradation of the yeast cell surface glucose sensors Rgt2 and Snf3. J Biol Chem 289:7247–7256

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Roy A, Shin YJ, Cho KH et al (2013) Mth1 regulates the interaction between the Rgt1 repressor and the Ssn6-Tup1 corepressor complex by modulating PKA-dependent phosphorylation of Rgt1. Mol Biol Cell 24:1493–1503

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Roy A, Jouandot D 2nd, Cho KH et al (2014a) Understanding the mechanism of glucose-induced relief of Rgt1-mediated repression in yeast. FEBS Open Bio 4:105–111

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Roy A, Kim YB, Cho KH, Kim JH (2014b) Glucose starvation-induced turnover of the yeast glucose transporter Hxt1. Biochim Biophys Acta 1840:2878–2885

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rubenstein EM, McCartney RR, Zhang C et al (2008) Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J Biol Chem 283:222–230

    CAS  PubMed  CrossRef  Google Scholar 

  • Rudolph MJ, Amodeo GA, Bai Y et al (2005) Crystal structure of the protein kinase domain of yeast AMP-activated protein kinase Snf1. Biochem Biophys Res Commun 337:1224–1228

    CAS  PubMed  CrossRef  Google Scholar 

  • Ruiz A, Serrano R, Ariño J (2008) Direct regulation of genes involved in glucose utilization by the calcium/calcineurin pathway. J Biol Chem 283:13923–13933

    CAS  PubMed  CrossRef  Google Scholar 

  • Sabina J, Johnston M (2009) Asymmetric signal transduction through paralogs that comprise a genetic switch for sugar sensing in Saccharomyces cerevisiae. J Biol Chem 284:29635–29643

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Salema-Oom M, Pinto VV, Gonçalves P et al (2005) Maltotriose utilization by industrial Saccharomyces strains: characterization of a new member of the α-glucosidase transporter family. Appl Environ Microbiol 71:5044–5049

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sanders D, Slayman CL (1982) Control of intracellular pH. Predominant role of oxidative metabolism, not proton transport, in the eukaryotic microorganism Neurospora. J Gen Physiol 80:377–402

    CAS  PubMed  CrossRef  Google Scholar 

  • Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:253–282

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sanz P, Alms GR, Haystead TA et al (2000) Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol Cell Biol 20:1321–1328

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Schmidt MC, McCartney RR, Zhang X et al (1999) Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol Cell Biol 19:4561–4571

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Schultz J, Marshall-Carlson L, Carlson M (1990) The N-terminal TPR region is the functional domain of SSN6, a nuclear phosphoprotein of Saccharomyces cerevisiae. Mol Cell Biol 10:4744–4756

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Serrano R (1977) Energy requirements for maltose transport in yeast. Eur J Biochem 80:97–102

    CAS  PubMed  CrossRef  Google Scholar 

  • Serrano R (1983) In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett 156:11–14

    CAS  PubMed  CrossRef  Google Scholar 

  • Serrano R, Kielland-Brandt MC, Fink GR (1986) Yeast plasma membrane ATPAse is essential for growth and has homology with (Na+ + K+), K+- and Ca2+- ATPases. Nature 319:689–693

    CAS  PubMed  CrossRef  Google Scholar 

  • Serrano R, Martin H, Casamayor A et al (2006) Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. J Biol Chem 281:39785–39795

    CAS  PubMed  CrossRef  Google Scholar 

  • Shamu CE, Cox JS, Walter P (1994) The unfolded-protein-response pathway in yeast. Trends Cell Biol 4:56–60

    CAS  PubMed  CrossRef  Google Scholar 

  • Sharma D, Masison DC (2009) Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept Lett 16:571–581

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Shor E, Fox CA, Broach JR (2013) The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress. PLoS Genet 9(8):e1003680. doi:10.1371/journal.pgen.1003680

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Smith RL, Redd MJ, Johnson AD (1995) The tetratricopeptide repeats of Ssn6 interact with the homeo domain of alpha 2. Genes Dev 9:2903–2910

    CAS  PubMed  CrossRef  Google Scholar 

  • Snowdon C, van der Merwe G (2012) Regulation of Hxt3 and Hxt7 turnover converges on the Vid30 complex and requires inactivation of the Ras/cAMP/PKA pathway in Saccharomyces cerevisiae. PLoS One 7(12):e50458. doi:10.1371/journal.pone.0050458

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sorger D, Daum G (2003) Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol 61:289–299

    CAS  PubMed  CrossRef  Google Scholar 

  • Sprague ER, Redd MJ, Johnson AD et al (2000) Structure of the C‐terminal domain of Tup1, a corepressor of transcription in yeast. EMBO J 19:3016–3027

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Stambuk BU, de Araujo PS (2001) Kinetics of active α-glucosidase transport in Saccharomyces cerevisiae. FEMS Yeast Res 1:73–78

    CAS  PubMed  Google Scholar 

  • Tamas MJ, Luyten K, Sutherland FC et al (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31:1087–1104

    CAS  PubMed  CrossRef  Google Scholar 

  • Tanaka K, Nakafuku M, Tamanoi F et al (1990) IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian Ras Gtpase-activating protein. Mol Cell Biol 10:4303–4313

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Temple MD, Perrone GG, Dawes IW (2005) Complex cellular responses to reactive oxygen species. Trends Cell Biol 15:319–326

    CAS  PubMed  CrossRef  Google Scholar 

  • Teusink B, Walsh MC, van Dam K et al (1998) The danger of metabolic pathways with turbo design. Trends Biochem Sci 23:162–169

    CAS  PubMed  CrossRef  Google Scholar 

  • Theodoris G, Bisson LF (2001) DDSE: downstream targets of the SNF3 signal transduction pathway. FEMS Microbiol Lett 197:73–77

    CAS  PubMed  CrossRef  Google Scholar 

  • Theodoris G, Fong NM, Coons DM et al (1994) High-copy suppression of glucose transport defects by HXT4 and regulatory elements in the promoters of the HXT genes in Saccharomyces cerevisiae. Genetics 137:957–966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thevelein JM, De Winde JH (1999) Novel sensing mechanisms and targets for the cAMP–protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918

    CAS  PubMed  CrossRef  Google Scholar 

  • Toda T, Cameron S, Sass P et al (1987a) Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7:1371–1377

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Toda T, Cameron S, Sass P et al (1987b) Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277–287

    CAS  PubMed  CrossRef  Google Scholar 

  • Tomas-Cobos L, Casadome L, Mas G et al (2004) Expression of the HXT1 low affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways. J Biol Chem 279:22010–22019

    CAS  PubMed  CrossRef  Google Scholar 

  • Treitel MA, Carlson M (1995) Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci U S A 92:3132–3136

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Treitel MA, Kuchin S, Carlson M (1998) Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol Cell Biol 18:6273–6280

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Tripodi F, Nicastro R, Reghellin V et al (2015) Post-translational modifications on yeast carbon metabolism: Regulatory mechanisms beyond transcriptional control. Biochim Biophys Acta 1850:620–627

    CAS  PubMed  CrossRef  Google Scholar 

  • Tulha J, Lima A, Lucas C et al (2010) Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given. Microb Cell Factor 9:82. doi:10.1186/1475-2859-9-82

    Google Scholar 

  • Tzamarias D, Struhl K (1994) Functional dissection of the yeast Cyc8–Tupl transcriptional co-repressor complex. Nature 369:758–761

    CAS  PubMed  CrossRef  Google Scholar 

  • Tzamarias D, Struhl K (1995) Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev 9:821–831

    CAS  PubMed  CrossRef  Google Scholar 

  • Vagnoli P, Bisson LF (1998) The SKS1 gene of Saccharomyces cerevisiae is required for long-term adaptation of snf3 null strains to low glucose. Yeast 14:359–369

    CAS  PubMed  CrossRef  Google Scholar 

  • Van Zeebroeck G, Bonini BM, Versele M et al (2009) Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor. Nat Chem Biol 5:45–52

    PubMed  CrossRef  CAS  Google Scholar 

  • Varanasi US, Klis M, Mikesell PB et al (1996) The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits. Mol Cell Biol 16:6707–6714

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Verghese J, Abrams J, Wang Y et al (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76:115–158

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Verwaal R, Paalman JWG, Hogenkamp A et al (2002) HXT5 expression is determined by growth rates in Saccharomyces cerevisiae. Yeast 19:1029–1038

    CAS  PubMed  CrossRef  Google Scholar 

  • Vilella F, Herrero E, Torres J et al (2005) Pkc1 and the upstream elements of the cell integrity pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, are required for cellular responses to oxidative stress. J Biol Chem 280:9149–9159

    CAS  PubMed  CrossRef  Google Scholar 

  • Wahi M, Komachi K, Johnson AD (1998) Gene Regulation by the Yeast Ssn6-Tup1 Corepressor. Cold Spring Harb Symp Quant Biol 63:447–458

    CAS  PubMed  CrossRef  Google Scholar 

  • Watson AD, Edmondson DG, Bone JR et al (2000) Ssn6-Tup1 interacts with class I histone deacetylases required for repression. Genes Dev 14:2737–2744

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Weindling E, Bar-Nun S (2015) Sir2 links the unfolded protein response and the heat shock response in a stress response network. Biochem Biophys Res Commun 457:473–478

    CAS  PubMed  CrossRef  Google Scholar 

  • Weinhandl K, Winkler M, Glieder A et al (2014) Carbon source dependent promoters in yeasts. Microbiol Cell Fact 13(5):1–17

    Google Scholar 

  • Westergaard SL, Oliveira AP, Bro C et al (2007) A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 96:134–145

    CAS  PubMed  CrossRef  Google Scholar 

  • Westerheide SD, Raynes R, Powell C et al (2012) HSF transcription factor family, heat shock response, and protein intrinsic disorder. Curr Protein Pept Sci 13:86–103

    CAS  PubMed  CrossRef  Google Scholar 

  • Westholm JO, Nordberg N, Muren E et al (2008) Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. BMC Genomics 9:601. doi:10.1186/1471-2164-9-601

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Wickner RB, Edskes HK, Kryndushkin D et al (2011) Prion diseases of yeast: amyloid structure and biology. Semin Cell Dev Biol 22:469–475

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wieczorke R, Kampe S, Weierstall T et al (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128

    CAS  PubMed  CrossRef  Google Scholar 

  • Wilson WA, Roach PJ (2002) Nutrient-regulated protein kinases in budding yeast. Cell 111:155–158

    CAS  PubMed  CrossRef  Google Scholar 

  • Wilson WA, Hawley SA, Hardie DG (1996) Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP: ATP ratio. Curr Biol 6:1426–1434

    CAS  PubMed  CrossRef  Google Scholar 

  • Wong KH, Struhl K (2011) The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes Dev 25(23):2525–2539

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    CAS  PubMed  CrossRef  Google Scholar 

  • Wu J, Trumbly RJ (1998) Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site. Yeast 14:985–1000

    CAS  PubMed  CrossRef  Google Scholar 

  • Wu J, Suka N, Carlson M et al (2001) TUP1 utilizes histone H3/H2B–specific HDA1 deacetylase to repress gene activity in yeast. Mol Cell 7:117–126

    CAS  PubMed  CrossRef  Google Scholar 

  • Wysocki R, Chery CC, Wawrzycka D et al (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40:1391–1401

    CAS  PubMed  CrossRef  Google Scholar 

  • Xiong Y, Lei QY, Zhao S et al (2011) Regulation of glycolysis and gluconeogenesis by acetylation of PKM and PEPCK. Cold Spring Harb Symp Quant Biol 76:285–289

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yang Z, Bisson LF (1996) The SKS1 protein kinase is a multicopy suppressor of the snf3 mutation of Saccharomyces cerevisiae. Yeast 12:1407–1419

    CAS  PubMed  CrossRef  Google Scholar 

  • Young ET, Dombek KM, Tachibana C et al (2003) Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J Biol Chem 278:26146–26158

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda F. Bisson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bisson, L.F., Fan, Q., Walker, G.A. (2016). Sugar and Glycerol Transport in Saccharomyces cerevisiae . In: Ramos, J., Sychrová, H., Kschischo, M. (eds) Yeast Membrane Transport. Advances in Experimental Medicine and Biology, vol 892. Springer, Cham. https://doi.org/10.1007/978-3-319-25304-6_6

Download citation