Abu Irqeba A, Li Y, Panahi M et al (2014) Regulating global sumoylation by a MAP kinase Hog1 and its potential role in osmo-tolerance in yeast. PLoS One 9(2):e87306. doi:10.1371/journal.pone.0087306
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Ahmadpour D, Geijer C, Tamas MJ et al (2014) Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins. Biochim Biophys Acta 1840:1482–1491
CAS
PubMed
CrossRef
Google Scholar
Ahuatzi D, Riera A, Pelaez R et al (2007) Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution. J Biol Chem 282:4485–4493
CAS
PubMed
CrossRef
Google Scholar
Alberti S, Halfmann R, King O et al (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Alberti S, Halfmann R, Lindquist S (2010) Biochemical, cell biological, and genetic assays to analyze amyloid and prion aggregation in yeast. Methods Enzymol 470:709–734
CAS
PubMed
CrossRef
Google Scholar
Albertyn J, Hohmann S, Thevelein JM et al (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Alepuz PM, Cunningham KW, Estruch F (1997) Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Mol Microbiol 26:91–98
CAS
PubMed
CrossRef
Google Scholar
Alves SL, Herberts RA, Hollatz C et al (2008) Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease. Appl Environ Microbiol 74:1494–1501
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Alves SL, Thevelein JM, Stambuk BU (2014) Expression of Saccharomyces cerevisiae α-glucosidase transporters under different growth conditions. Braz J Chem Eng 31:1–8
CAS
CrossRef
Google Scholar
Anjos J, Rodrigues de Sousa H, Roca C et al (2013) Fsy1, the sole hexose proton transporter characterized in Saccharomyces yeasts exhibits a variable fructose:H+ stoichiometry. Biochim Biophys Acta 1828:201–207
CAS
PubMed
CrossRef
Google Scholar
Ashe MP, De Long SK, Sachs AB (2000) Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell 11:833–848
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ashrafi K, Lin SS, Manchester JK et al (2000) Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev 14:1872–1885
CAS
PubMed
PubMed Central
Google Scholar
Babazadeh R, Furukawa T, Hohmann S et al (2014) Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation. Sci Rep 4:4697. doi:10.1038/srep04697
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Beck ZT, Cloutier SC, Schipma MJ et al (2014) Regulation of glucose-dependent gene expression by the RNA helicase Dbp2 in Saccharomyces cerevisiae. Genetics 198:1001–1014
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Becker JU, Betz A (1972) Membrane transport as controlling pacemaker of glycolysis in Saccharomyces carlsbergensis. Biochim Biophys Acta 274:584–597
CAS
PubMed
CrossRef
Google Scholar
Belinchon MM, Gancedo JM (2007) Different signalling pathways mediate glucose induction of SUC2, HXT1 and pyruvate decarboxylase in yeast. FEMS Yeast Res 7:40–47
CAS
PubMed
CrossRef
Google Scholar
Bendrioua L, Smedh M, Almquist J et al (2014) Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels. J Biol Chem 289:12863–12875
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bermejo C, Haerizadeh F, Sadoine MSC et al (2013) Differential regulation of glucose transport activity in yeast by specific cAMP signatures. Biochem J 452:489–497
CAS
PubMed
CrossRef
Google Scholar
Bisson LF, Neigeborn L, Carlson M et al (1987) The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae. J Bacteriol 169:1656–1662
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bisson LF, Coons DM, Kruckeberg AL et al (1993) Yeast sugar transporters. Crit Rev Biochem Mol Biol 28:259–308
CAS
PubMed
CrossRef
Google Scholar
Bleve G, Zacheo G, Cappello MS, Dellaglio F, Grieco F (2005) Subcellular localization and functional expression of the glycerol uptake protein 1 (GUP1) of Saccharomyces cerevisiae tagged with green fluorescent protein. Biochem J 390:145–155
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111
CAS
PubMed
CrossRef
Google Scholar
Bosch D, Johansson M, Ferndahl C et al (2007) Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux. FEMS Yeast Res 8:10–25
PubMed
CrossRef
CAS
Google Scholar
Bosson R, Jaquenoud M, Conzelmann A (2006) GUP1 of Saccharomyces cerevisiae encodes an O-acyltransferase involved in remodeling of the GPI anchor. Mol Biol Cell 17:2636–2645
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Boulton RB, Singleton VS, Bisson LF et al (1996) Principles and practices of winemaking. Chapman Hall, New York
CrossRef
Google Scholar
Boveris A (1984) Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol 105:429–435
CAS
PubMed
CrossRef
Google Scholar
Brewster JL, de Valoir T, Dwyer ND et al (1993) An osmosensing signal transduction pathway in yeast. Science 259:1760–1763
CAS
PubMed
CrossRef
Google Scholar
Brion C, Ambroset C, Sanchez I et al (2013) Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks. BMC Genomics 14:681. doi:10.1186/1471-2164-14-681
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Brown JC, Lindquist S (2009) A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes Dev 23:2320–2332
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Brown CJ, Todd KM, Rosenzweig RF (1998) Multiple duplications of yeast hexose transport genes in response to selection in a glucose –limited environment. Mol Biol Evol 15:931–942
CAS
PubMed
CrossRef
Google Scholar
Buziol S, Warth L, Magario I et al (2008) Dynamic response of the expression of hxt1, hxt5 and hxt7 transport proteins in Saccharomyces cerevisiae to perturbations in the extracellular glucose concentration. J Biotechnol 134:203–210
CAS
PubMed
CrossRef
Google Scholar
Cakir T, Kirdar B, Onsan ZI et al (2007) Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. BMC Syst Biol 1:18. doi:10.1186/1752-0509-1-18
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Cannon JF, Tatchell K (1987) Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol Cell Biol 7:2653–2663
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Causton HC, Ren B, Koh SS et al (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Celenza JL, Carlson M (1984) Structure and expression of the SNF1 gene of Saccharomyces cerevisiae. Mol Cell Biol 4:54–60
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Celenza JL, Marshall-Carlson L, Carlson M (1988) The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein. Proc Natl Acad Sci U S A 85:2130–2134
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Celenza JL, Eng FJ, Carlson M (1989) Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Mol Cell Biol 9:5045–5054
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Charron MJ, Dubin RA, Michels CA (1986) Structural and functional analysis of the MAL1 locus of Saccharomyces cerevisiae. Mol Cell Biol 6:3891–3899
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Charron MJ, Read E, Hunt SR et al (1989) Molecular evolution of the telomere-associated MAL loci of Saccharomyces. Genetics 122:307–316
CAS
PubMed
PubMed Central
Google Scholar
Chen RE, Thorner J (2007) Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1773:1311–1340
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chow TH, Sollitti P, Marmur J (1989) Structure of the multigene family of MAL loci in Saccharomyces. Mol Gen Genet 217:60–69
CAS
PubMed
CrossRef
Google Scholar
Coelho MA, Gonçalves C, Sampaio JP et al (2012) Extensive intra-kingdom horizontal gene transfer converging on a fungal fructose transporter gene. PLOS Genet 9(6):e100358. doi:10.1371/journal.pgen.1003587
Google Scholar
Colombo S, Ronchetti D, Thevelein JM et al (2004) Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae. J Biol Chem 279:46715–46722
CAS
PubMed
CrossRef
Google Scholar
Compagno C, Dashko S, Piškur J (2014) Introduction to carbon metabolism in yeast. In: Piškur J, Compagno C (eds) Molecular mechanisms in yeast carbon metabolism. Springer, Heidelberg, pp 1–19
Google Scholar
Conlan RS, Gounalaki N, Hatzis P et al (1999) The Tup1-Cyc8 protein complex can shift from a transcriptional co-repressor to a transcriptional co-activator. J Biol Chem 274:205–210
CAS
PubMed
CrossRef
Google Scholar
Conrad M, Schothorst J, Kankipati HN et al (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38:254–299
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Coons DM, Vagnoli P, Bisson LF (1997) The C-terminal domain of Snf3p is sufficient to complement the growth defect of snf3 null mutations in Saccharomyces cerevisiae: SNF3 functions in glucose recognition. Yeast 13:9–20
CAS
PubMed
CrossRef
Google Scholar
Cousseu FEM, Alves SL, Trichez D et al (2013) Characterization of maltotriose transport from the Saccharomyces eubayanus subgenome of the hybrid Saccharomyces pastorianus lager brewing yeast strain Weihenstephan 34170. Lett Appl Microbiol 56:21–29
CrossRef
CAS
Google Scholar
Daran-Lapujade P, Jansen MLA, Darant JM et al (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. J Biol Chem 279:9125–9138
CAS
PubMed
CrossRef
Google Scholar
De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156
PubMed
CrossRef
Google Scholar
De la Torre-Ruiz MA, Pujol N, Sundaran V (2015) Coping with oxidative stress. The yeast model. Curr Drug Targets 16(1):2–12
PubMed
CrossRef
CAS
Google Scholar
De Vit MJ, Waddle J, Johnston M (1997) Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8:1603–1618
PubMed
PubMed Central
CrossRef
Google Scholar
Diaz-Ruiz R, Rigoulet M, Devin A (2011) Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta 1807:568–576
CAS
PubMed
CrossRef
Google Scholar
Diderich JA, Schepper M, van Hoek P et al (1999) Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 274:15350–15359
CAS
PubMed
CrossRef
Google Scholar
DiSalvo S, Serio TR (2011) Insights into prion biology: integrating a protein misfolding pathway with its cellular environment. Prion 5:76–83
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Dlugai S, Hippler S, Wieczorke R et al (2001) Glucose-dependent and-independent signalling functions of the yeast glucose sensor Snf3. FEBS Lett 505:389–392
CAS
PubMed
CrossRef
Google Scholar
Dupres V, Alsteens D, Wilk S et al (2009) The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nat Chem Biol 5:857–862
CAS
PubMed
CrossRef
Google Scholar
Duskova M, Borovikova D, Herynkova P et al (2015) The role of glycerol transporters in yeast cells in various physiological and stress conditions. FEMS Microbiol Lett 362:1–8
PubMed
CrossRef
Google Scholar
Duval EH, Alves SL Jr, Dunn B et al (2010) Microarray karyotyping of maltose-fermenting yeasts with differing maltotriose utilization profiles reveals copy number variation in genes involved in maltose and maltotriose utilization. J Appl Microbiol 109:248–259
CAS
PubMed
Google Scholar
Eddy AA, Barnett JA (2007) A history of research on yeasts II. The study of solute transport: the first 90 years, simple and facilitated diffusion. Yeast 24:1023–1059
CAS
PubMed
CrossRef
Google Scholar
Elbing K, Larsson C, Bill RM et al (2004) Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae. Appl Environ Microbiol 70:5323–5330
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ellis J (1987) Proteins as molecular chaperones. Nature 328:378–379
CAS
PubMed
CrossRef
Google Scholar
Eraso P, Mazon MJ, Portillo F (2006) Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochim Biophys Acta 1758:164–170
CAS
PubMed
CrossRef
Google Scholar
Eraso P, Mazon MJ, Posas F et al (2011) Gene expression profiling of yeasts overexpressing wild type or misfolded Pma1 variants reveals activation of the Hog1 MAPK pathway. Mol Microbiol 79:1339–1352
CAS
PubMed
CrossRef
Google Scholar
Estrada E, Agostinis P, Vandenheede JR et al (1996) Phosphorylation of yeast plasma membrane H+-ATPase by casein kinase I. J Biol Chem 271:32064–32072
CAS
PubMed
CrossRef
Google Scholar
Ferreira C, Lucas C (2007) Glucose repression over Saccharomyces cerevisiae glycerol/H+ symporter gene STL1 is overcome by high temperature. FEBS Lett 581:1923–1927
CAS
PubMed
CrossRef
Google Scholar
Ferreira C, van Voorst F, Martins A et al (2005) A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae. Mol Biol Cell 16:2068–2076
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ferreira C, Silva S, Faria-Oliveira F et al (2010) Candida albicans virulence and drug-resistance requires the O-acyltransferase Gup1p. BMC Microbiol 10:238. doi:10.1186/1471-2180-10-238
Google Scholar
Ferrer-Dalmau J, Randez-Gil F, Marquina M et al (2015) Protein kinase Snf1 is involved in the proper regulation of the unfolded protein response in Saccharomyces cerevisiae. Biochem J 468(1):33–47. doi:10.1042/BJ20140734
Google Scholar
Flick KM, Spielewoy N, Kalashnikova TI et al (2003) Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol Biol Cell 14:3230–3241
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Ann Rev Biochem 70:603–647
CAS
PubMed
CrossRef
Google Scholar
Galeote V, Novo M, Salema-Oom M et al (2010) FSY1 a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H+ symporter. Microbiology 156:3754–3761
CAS
PubMed
CrossRef
Google Scholar
Gancedo JM (2008) The early steps of glucose signaling in yeast. FEMS Microbiol Rev 32:673–704
CAS
PubMed
CrossRef
Google Scholar
Gancedo C, Serrano R (1989) Energy-yielding metabolism in yeasts. In: Rose AH, Harrison JS (eds) The yeasts. Academic, London, pp 205–259
Google Scholar
Garcia DM, Jarosz DF (2014) Rebels with a cause: molecular features and physiological consequences of yeast prions. FEMS Yeast Res 14:136–147
CAS
PubMed
CrossRef
Google Scholar
Gasch A (2003) The environmental stress response: a common yeast response to diverse environmental stresses. In: Hohmann S, Mager W (eds) Yeast stress responses, vol 1. Topics in current genetics. Springer, Berlin/Heidelberg, pp 11–70
Google Scholar
Gasch AP, Spellman PT, Kao CM et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Geladé R, Van de Velde S, Van Dijck P et al (2003) Multi-level response of the yeast genome to glucose. Genome Biol 4:233–233
PubMed
PubMed Central
CrossRef
Google Scholar
Ghillebert R, Swinnen E, Wen J et al (2011) The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J 278:3978–3990
CAS
PubMed
CrossRef
Google Scholar
Gong Y, Kakihara Y, Krogan N et al (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275. doi:10.1038/msb.2009.26
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Grandier-Vazeille X, Bathany K, Chaignepain S et al (2001) Yeast mitochondrial dehydrogenases are associated in a supramolecular complex. Biochemistry 40:9758–9769
CAS
PubMed
CrossRef
Google Scholar
Grauslund M, Ronnow B (2000) Carbon source-dependent transcriptional regulation of the mitochondrial glycerol-3-phosphate dehydrogenase gene, GUT2, from Saccharomyces cerevisiae. Can J Microbiol 46:1096–1100
CAS
PubMed
CrossRef
Google Scholar
Gray JV, Petsko GA, Johnston GC et al (2004) “Sleeping beauty”: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68:187–206
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Greatrix BW, van Vuuren HJJ (2006) Expression of the HXT13, HXT15 and HXT17 genes in Saccharomyces cerevisiae and stabilization of the HXT1 gene transcript by sugar-induced osmotic stress. Curr Genet 49:205–217
CAS
PubMed
CrossRef
Google Scholar
Guillaume C, Delobel P, Sablayrolles JM et al (2007) Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: a mutated HXT3 allele enhances fructose fermentation. Appl Environ Microbiol 73:2432–2439
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hahn JS, Thiele DJ (2004) Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem 279:5169–5176
CAS
PubMed
CrossRef
Google Scholar
Halfmann R, Lindquist S (2010) Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 330:629–632
CAS
PubMed
CrossRef
Google Scholar
Halfmann R, Jarosz DF, Jones SK et al (2012) Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482:363–368
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hardy TA, Huang D, Roach PJ (1994) Interactions between cAMP-dependent and SNF1 protein kinases in the control of glycogen accumulation in Saccharomyces cerevisiae. J Biol Chem 269:27907–27913
CAS
PubMed
Google Scholar
Haurie V, Perrot M, Mini T et al (2001) The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 276:76–85
CAS
PubMed
CrossRef
Google Scholar
Hedbacker K, Carlson M (2008) SNF1/AMPK pathways in yeast. Front Biosci 13:2408–2420
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Henderson CM, Lozada-Contreras M, Jiranek V et al (2013) Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains. Appl Environ Microbiol 79:91–104
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45
CAS
PubMed
CrossRef
Google Scholar
Holmes DL, Lancaster AK, Lindquist S et al (2013) Heritable remodeling of yeast multicellularity by an environmentally responsive prion. Cell 153:153–165
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Holsbeeks I, Lagatie O, Van Nuland A et al (2004) The eukaryotic plasma membrane as a nutrient-sensing device. Trends Biochem Sci 29:556–564
CAS
PubMed
CrossRef
Google Scholar
Holst B, Lunde C, Lages F et al (2000) GUP1 and its close homologue GUP2, encoding multimembrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae. Mol Microbiol 37:108–124
CAS
PubMed
CrossRef
Google Scholar
Honigberg SM, Lee RH (1998) Snf1 kinase connects nutritional pathways controlling meiosis in Saccharomyces cerevisiae. Mol Cell Biol 18:4548–4555
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Horák J (2013) Regulations of sugar transporters: insights from yeast. Curr Genet 59:1–31
PubMed
CrossRef
CAS
Google Scholar
Hunter T, Plowman GD (1997) The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22:18–22
Google Scholar
Jansen MLA, De Winde JH, Pronk JT (2002) Hxt-carrier-mediated glucose efflux upon exposure of Saccharomyces cerevisiae to excess maltose. Appl Environ Microbiol 68:4259–4265
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Jarosz DF, Brown JC, Walker GA et al (2014) Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell 158:1083–1093
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Jiang R, Carlson M (1996) Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes & Dev 10:3105–3115
Google Scholar
Jiang and Carlson 1997 in the text is incorrect (line 612, 889) it is: Jiang R, Carlson M (1996) Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes & Devel 10: 3105–3115
Google Scholar
Johnston M, Kim J (2005) Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem Soc Trans 33:247–252
CAS
PubMed
CrossRef
Google Scholar
Jouandot D 2nd, Roy A, Kim JH (2011) Functional dissection of the glucose signaling pathways that regulate the yeast glucose transporter gene (HXT) repressor Rgt1. J Cell Biochem 112:3268–3275
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kaniak A, Xue Z, Macool D, Kim JH et al (2004) Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot cell 3:221–231
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Karpel JE, Place WR, Bisson LF (2008) Analysis of the major hexose transporter genes in wine strains of Saccharomyces cerevisiae. Am J Enol Vitic 59:265–275
CAS
Google Scholar
Kasahara T, Maeda M, Ishiguro M et al (2007) Identification by comprehensive chimeric analysis of a key residue responsible for high affinity glucose transport by yeast HXT2. J Biol Chem 282:13146–13150
CAS
PubMed
CrossRef
Google Scholar
Keleher CA, Redd MJ, Schultz J, Carlson M et al (1992) Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68:709–719
CAS
PubMed
CrossRef
Google Scholar
Kim JH (2009) DNA-binding properties of the yeast Rgt1 repressor. Biochimie 91:300–303
CAS
PubMed
CrossRef
Google Scholar
Kim JH, Johnston M (2006) Two glucose-sensing pathways converg on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae. J Biol Chem 281:26144–26149
CAS
PubMed
CrossRef
Google Scholar
Kim JH, Polish J, Johnston M (2003) Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1. Mol Cell Biol 23:5208–5216
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kim JH, Brachet V, Moriya H, Johnston M (2006) Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae. Eukaryot Cell 5:167–173
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kim JH, Roy A, Jouandot D 2nd, Cho KH (2013) The glucose signaling network in yeast. Biochim Biophys Acta 1830:5204–5210
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Klipp E, Nordlander B, Kruger R et al (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23:975–982
CAS
PubMed
CrossRef
Google Scholar
Klockow C, Stahl F, Scheper T et al (2008) In vivo regulation of glucose transporter genes at glucose concentrations between 0 and 500 mg/L in a wild type of Saccharomyces cerevisiae. J Biotechnol 135:161–167
CAS
PubMed
CrossRef
Google Scholar
Kraakman L, Lemaire K, Ma P, Teunissen AWRH et al (1999) A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32:1002–1012
CAS
PubMed
CrossRef
Google Scholar
Krampe S, Stamm O, Hollenberg CP et al (1998) Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis. FEBS Lett 441:343–347
CAS
PubMed
CrossRef
Google Scholar
Kresnowati MT, van Winden WA, Almering MJH et al (2006) When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2: n/a. doi:10.1038/msb4100083
Kriel J, Haesendonckx S, Rubio-Texeira M et al (2011) From transporter to transceptor: signaling from transporters provokes re-evaluation of complex trafficking and regulatory controls: endocytic internalization and intracellular trafficking of nutrient transceptors may, at least in part, be governed by their signaling function. BioEssays 33:870–879
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283–292
CAS
PubMed
CrossRef
Google Scholar
Kruckeberg AL, Bisson LF (1990) The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport. Mol Cell Biol 10:5903–5913
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kuchin S, Treich I, Carlson M (2000) A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme. Proc Natl Acad Sci U S A 97:7916–7920
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kuchin S, Vyas VK, Carlson M (2002) Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22:3994–4000
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kuttykrishnan S, Sabina J, Langton LL et al (2010) A quantitative model of glucose signaling in yeast reveals an incoherent feed forward loop leading to a specific, transient pulse of transcription. Proc Natl Acad Sci U S A 107:16743–16748
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lafuente MJ, Gancedo C, Jauniaux JC et al (2000) Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae. Mol Microbiol 35:161–172
CAS
PubMed
CrossRef
Google Scholar
Lakshmanan J, Mosley AL, Ozcan S (2003) Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1. Curr Genet 44:19–25
CAS
PubMed
CrossRef
Google Scholar
Larsson C, Pahlman IL, Ansell R et al (1998) The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14:347–357
CAS
PubMed
CrossRef
Google Scholar
Leandro MJ, Fonseca C, Gonçalves P (2009) Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res 9:511–525
CAS
PubMed
CrossRef
Google Scholar
Lecchi S, Nelson CJ, Allen KE et al (2007) Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation. J Biol Chem 282:35471–35481
CAS
PubMed
CrossRef
Google Scholar
Lee ME, Singh K, Snider J et al (2011) The Rho1 GTPase acts together with a vacuolar glutathione S-conjugate transporter to protect yeast cells from oxidative stress. Genetics 188:859–870
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lee YJ, Jeschke GR, Roelants FM et al (2012) Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress. Mol Cell Biol 32:4705–4717
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lewis DA, Bisson LF (1991) The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters. Mol Cell Biol 11:3804–3813
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Li L, Kowal AS (2012) Environmental regulation of prions in yeast. PLoS Pathog 8(11):e1002973. doi:10.1371/journal.ppat.1002973
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Liang H, Gaber RF (1996) A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6. Mol Biol Cell 7:1953–1966
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lo WS, Duggan L, Emre NC et al (2001) Snf1-a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293:1142–1146
CAS
PubMed
CrossRef
Google Scholar
Luyten K, Albertyn J, Skibbe WF et al (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371
CAS
PubMed
PubMed Central
Google Scholar
Luyten K, Riou D, Blondin B (2002) The hexose transporters of Saccharomyces cerevisiae play different roles during enological fermentation. Yeast 19:713–726
CAS
PubMed
CrossRef
Google Scholar
Maier A, Völker B, Boles E et al (2002) Characterization of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6 Hxt7 or Gal2 transporters. FEMS Yeast Res 3:539–550
Google Scholar
Malave TM, Dent SY (2006) Transcriptional repression by Tup1-Ssn6. Biochem Cell Biol 84(4):437–443
CAS
PubMed
CrossRef
Google Scholar
Marshall-Carlson L, Neigeborn L, Coons D et al (1991) Dominant and recessive suppressors that restore glucose transport in a yeast snf3 mutant. Genetics 128:505–512
CAS
PubMed
PubMed Central
Google Scholar
Martinez-Pastor MT, Marchler G, Schuller C et al (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235
CAS
PubMed
PubMed Central
Google Scholar
Mason AB, Allen KE, Slayman CW (2014) C-terminal truncations of the Saccharomyces cerevisiae PMA1 H+-ATPase have major impacts on protein conformation, trafficking, quality control, and function. Eukaryot Cell 13:43–52
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mayordomo I, Estruch F, Sanz P (2002) Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes. J Biol Chem 277:35650–35656
CAS
PubMed
CrossRef
Google Scholar
McCartney RR, Schmidt MC (2001) Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biol Chem 276:36460–36466
CAS
PubMed
CrossRef
Google Scholar
McGlinchey RP, Kryndushkin D, Wickner RB (2011) Suicidal [PSI+] is a lethal yeast prion. Proc Natl Acad Sci U S A 108:5337–5341
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Moriya H, Johnston M (2004) Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinas I. Proc Natl Acad Sci U S A 101:1572–1577
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mosley AL, Lakshmanan J, Aryal BK et al (2003) Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator. J Biol Chem 278:10322–10327
CAS
PubMed
CrossRef
Google Scholar
Naito C, Ito H, Oshiro T et al (2014) A new pma1 mutation identified in a chronologically long-lived fission yeast mutant. FEBS Open Bio 4:829–833. doi:10.1016/j.fob.2014.09.006
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Nayak V, Zhao K, Wyce A et al (2006) Structure and dimerization of the kinase domain from yeast Snf1, a member of the Snf1/AMPK protein family. Structure 14:477–485
CAS
PubMed
CrossRef
Google Scholar
Neigeborn L, Carlson M (1984) Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108:845–858
CAS
PubMed
PubMed Central
Google Scholar
Norbeck J, Pahlman AK, Akhtar N et al (1996) Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem 271:13875–13881
CAS
PubMed
CrossRef
Google Scholar
Novo M, Bigey F, Beyne E et al (2009) Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A 106:16333–16338
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Nozawa A, Takano J, Kobayashi M et al (2006) Roles of BOR1, DUR3, and FPS1 in boron transport and tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 262:216–222
CAS
PubMed
CrossRef
Google Scholar
Oliveira AP, Sauer U (2012) The importance of post-translational modifications in regulating Saccharomyces cerevisiae metabolism. FEMS Yeast Res 12:104–117
CAS
PubMed
CrossRef
Google Scholar
Oliveira R, Lages F, Silva-Graca M et al (2003) Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae: artefacts and re-definitions. Biochim Biophys Acta 1613:57–71
CAS
PubMed
CrossRef
Google Scholar
Ostling J, Carlberg M, Ronne H (1996) Functional domains in the Mig1 repressor. Mol Cell Biol 16:753–761
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Otterstedt K, Larsson C, Bill RM et al (2004) Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO Rep 5:431–443
CrossRef
CAS
Google Scholar
Ozcan S, Johnston M (1995) Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol 15:1564–1572
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ozcan S, Johnston M (1996) Two different repressors collaborate to restrict expression of the yeast glucose transporter genes HXT2 and HXT4 to low levels of glucose. Mol Cell Biol 16:5536–5545
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ozcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569
CAS
PubMed
PubMed Central
Google Scholar
Ozcan S, Dover J, Rosenwald AG et al (1996a) Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci U S A 93:12428–12432
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ozcan S, Leong T, Johnston M (1996b) Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription. Mol Cell Biol 16:6419–6426
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Papamichos-Chronakis M, Conlan RS, Gounalaki N, Copf T, Tzamarias D (2000) Hrs1/Med3 Is a Cyc8-Tup1 Corepressor Target in the RNA Polymerase II Holoenzyme. J Biol Chem 275:8397–8403
Google Scholar
Papamichos-Chronakis M, Gligoris T, Tzamarias D (2004) The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. EMBO Rep 5:368–372
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Park JI, Collinson EJ, Grant CM et al (2005) Rom2p, the Rho1 GTP/GDP exchange factor of Saccharomyces cerevisiae, can mediate stress responses via the Ras-cAMP pathway. J Biol Chem 280:2529–2535
CAS
PubMed
CrossRef
Google Scholar
Pasula S, Jouandot D, Kim JH (2007) Biochemical evidence for glucose-independent induction of HXT expression in Saccharomyces cerevisiae. FEBS Lett 581:3230–3234
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Pasula S, Chakraborty S, Choi JH et al (2010) Role of casein kinase 1 in the glucose sensor-mediated signaling pathway in yeast. BMC Cell Biol 11:17
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Pavlik P, Simon M, Schuster T et al (1993) The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterization. Curr Genet 24:21–25
CAS
PubMed
CrossRef
Google Scholar
Peeters K, Thevelein JM (2014) Glucose sensing and signal transduction in Saccharomyces cerevisiae. In: Piškur J, Compagno C (eds) Molecular mechanisms in yeast carbon metabolism. Springer, Heidelberg, pp 21–56
CrossRef
Google Scholar
Peeters T, Louwet W, Gelade R et al (2006) Kelch-repeat proteins interacting with the Galpha protein Gpa2 bypass adenylate cyclase for direct regulation of protein kinase A in yeast. Proc Natl Acad Sci U S A 103:13034–13039
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Perez M, Lutent K, Michel R et al (2005) Analysis of Saccharomyces cerevisiae hexose carrier expression during wine fermentation: both low- and high-affinity Hxt transporters are expressed. FEMS Yeast Res 5:351–361
CAS
PubMed
CrossRef
Google Scholar
Petkova MI, Pujol-Carrion N, de la Torre-Ruiz MA (2012) Mtl1 O-mannosylation mediated by both Pmt1 and Pmt2 is important for cell survival under oxidative conditions and TOR blockade. Fungal Genet Biol 49:903–914
CAS
PubMed
CrossRef
Google Scholar
Philips J, Herskowitz I (1997) Osmotic balance regulates cell fusion during mating in Saccharomyces cerevisiae. J Cell Biol 138:961–974
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Pirkkala L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131
CAS
PubMed
CrossRef
Google Scholar
Place WR, Bisson LF (2013) Identification of HXT7 as a suppressor of the snf3 growth defect in wine and wild-type strains of Saccharomyces cerevisiae. Am J Enol Vitic 64:251–257
CAS
CrossRef
Google Scholar
Polish JA, Kim JH, Johnston M (2005) How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose. Genetics 169:583–594
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ramakrishnan V, Theodoris G, Bisson LF (2006) Loss of IRA2 suppresses the growth defect on low glucose caused by the snf3 mutation in Saccharomyces cerevisiae. FEMS Yeast Res 7:67–77
CrossRef
CAS
Google Scholar
Reifenberger E, Freidel K, Ciriacy M (1995) Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of hexose transporters on glycolytic flux. Mol Microbiol 16:157–167
CAS
PubMed
CrossRef
Google Scholar
Reifenberger E, Boles E, Ciriacy M (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333
CAS
PubMed
CrossRef
Google Scholar
Rødkær SV, Færgeman NJ (2014) Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae. FEMS Yeast Res 14:683–696
PubMed
CrossRef
CAS
Google Scholar
Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and –signaling mechanisms in yeast. FEMS Yeast Res 2:183–201
CAS
PubMed
CrossRef
Google Scholar
Ronnow B, Kielland-Brandt MC (1993) GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae. Yeast 9:1121–1130
CAS
PubMed
CrossRef
Google Scholar
Roy A, Kim JH (2014) Endocytosis and vacuolar degradation of the yeast cell surface glucose sensors Rgt2 and Snf3. J Biol Chem 289:7247–7256
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Roy A, Shin YJ, Cho KH et al (2013) Mth1 regulates the interaction between the Rgt1 repressor and the Ssn6-Tup1 corepressor complex by modulating PKA-dependent phosphorylation of Rgt1. Mol Biol Cell 24:1493–1503
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Roy A, Jouandot D 2nd, Cho KH et al (2014a) Understanding the mechanism of glucose-induced relief of Rgt1-mediated repression in yeast. FEBS Open Bio 4:105–111
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Roy A, Kim YB, Cho KH, Kim JH (2014b) Glucose starvation-induced turnover of the yeast glucose transporter Hxt1. Biochim Biophys Acta 1840:2878–2885
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Rubenstein EM, McCartney RR, Zhang C et al (2008) Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J Biol Chem 283:222–230
CAS
PubMed
CrossRef
Google Scholar
Rudolph MJ, Amodeo GA, Bai Y et al (2005) Crystal structure of the protein kinase domain of yeast AMP-activated protein kinase Snf1. Biochem Biophys Res Commun 337:1224–1228
CAS
PubMed
CrossRef
Google Scholar
Ruiz A, Serrano R, Ariño J (2008) Direct regulation of genes involved in glucose utilization by the calcium/calcineurin pathway. J Biol Chem 283:13923–13933
CAS
PubMed
CrossRef
Google Scholar
Sabina J, Johnston M (2009) Asymmetric signal transduction through paralogs that comprise a genetic switch for sugar sensing in Saccharomyces cerevisiae. J Biol Chem 284:29635–29643
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Salema-Oom M, Pinto VV, Gonçalves P et al (2005) Maltotriose utilization by industrial Saccharomyces strains: characterization of a new member of the α-glucosidase transporter family. Appl Environ Microbiol 71:5044–5049
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sanders D, Slayman CL (1982) Control of intracellular pH. Predominant role of oxidative metabolism, not proton transport, in the eukaryotic microorganism Neurospora. J Gen Physiol 80:377–402
CAS
PubMed
CrossRef
Google Scholar
Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:253–282
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sanz P, Alms GR, Haystead TA et al (2000) Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol Cell Biol 20:1321–1328
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Schmidt MC, McCartney RR, Zhang X et al (1999) Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol Cell Biol 19:4561–4571
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Schultz J, Marshall-Carlson L, Carlson M (1990) The N-terminal TPR region is the functional domain of SSN6, a nuclear phosphoprotein of Saccharomyces cerevisiae. Mol Cell Biol 10:4744–4756
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Serrano R (1977) Energy requirements for maltose transport in yeast. Eur J Biochem 80:97–102
CAS
PubMed
CrossRef
Google Scholar
Serrano R (1983) In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett 156:11–14
CAS
PubMed
CrossRef
Google Scholar
Serrano R, Kielland-Brandt MC, Fink GR (1986) Yeast plasma membrane ATPAse is essential for growth and has homology with (Na+ + K+), K+- and Ca2+- ATPases. Nature 319:689–693
CAS
PubMed
CrossRef
Google Scholar
Serrano R, Martin H, Casamayor A et al (2006) Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. J Biol Chem 281:39785–39795
CAS
PubMed
CrossRef
Google Scholar
Shamu CE, Cox JS, Walter P (1994) The unfolded-protein-response pathway in yeast. Trends Cell Biol 4:56–60
CAS
PubMed
CrossRef
Google Scholar
Sharma D, Masison DC (2009) Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept Lett 16:571–581
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Shor E, Fox CA, Broach JR (2013) The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress. PLoS Genet 9(8):e1003680. doi:10.1371/journal.pgen.1003680
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Smith RL, Redd MJ, Johnson AD (1995) The tetratricopeptide repeats of Ssn6 interact with the homeo domain of alpha 2. Genes Dev 9:2903–2910
CAS
PubMed
CrossRef
Google Scholar
Snowdon C, van der Merwe G (2012) Regulation of Hxt3 and Hxt7 turnover converges on the Vid30 complex and requires inactivation of the Ras/cAMP/PKA pathway in Saccharomyces cerevisiae. PLoS One 7(12):e50458. doi:10.1371/journal.pone.0050458
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sorger D, Daum G (2003) Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol 61:289–299
CAS
PubMed
CrossRef
Google Scholar
Sprague ER, Redd MJ, Johnson AD et al (2000) Structure of the C‐terminal domain of Tup1, a corepressor of transcription in yeast. EMBO J 19:3016–3027
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Stambuk BU, de Araujo PS (2001) Kinetics of active α-glucosidase transport in Saccharomyces cerevisiae. FEMS Yeast Res 1:73–78
CAS
PubMed
Google Scholar
Tamas MJ, Luyten K, Sutherland FC et al (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31:1087–1104
CAS
PubMed
CrossRef
Google Scholar
Tanaka K, Nakafuku M, Tamanoi F et al (1990) IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian Ras Gtpase-activating protein. Mol Cell Biol 10:4303–4313
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Temple MD, Perrone GG, Dawes IW (2005) Complex cellular responses to reactive oxygen species. Trends Cell Biol 15:319–326
CAS
PubMed
CrossRef
Google Scholar
Teusink B, Walsh MC, van Dam K et al (1998) The danger of metabolic pathways with turbo design. Trends Biochem Sci 23:162–169
CAS
PubMed
CrossRef
Google Scholar
Theodoris G, Bisson LF (2001) DDSE: downstream targets of the SNF3 signal transduction pathway. FEMS Microbiol Lett 197:73–77
CAS
PubMed
CrossRef
Google Scholar
Theodoris G, Fong NM, Coons DM et al (1994) High-copy suppression of glucose transport defects by HXT4 and regulatory elements in the promoters of the HXT genes in Saccharomyces cerevisiae. Genetics 137:957–966
CAS
PubMed
PubMed Central
Google Scholar
Thevelein JM, De Winde JH (1999) Novel sensing mechanisms and targets for the cAMP–protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918
CAS
PubMed
CrossRef
Google Scholar
Toda T, Cameron S, Sass P et al (1987a) Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7:1371–1377
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Toda T, Cameron S, Sass P et al (1987b) Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277–287
CAS
PubMed
CrossRef
Google Scholar
Tomas-Cobos L, Casadome L, Mas G et al (2004) Expression of the HXT1 low affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways. J Biol Chem 279:22010–22019
CAS
PubMed
CrossRef
Google Scholar
Treitel MA, Carlson M (1995) Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci U S A 92:3132–3136
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Treitel MA, Kuchin S, Carlson M (1998) Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol Cell Biol 18:6273–6280
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Tripodi F, Nicastro R, Reghellin V et al (2015) Post-translational modifications on yeast carbon metabolism: Regulatory mechanisms beyond transcriptional control. Biochim Biophys Acta 1850:620–627
CAS
PubMed
CrossRef
Google Scholar
Tulha J, Lima A, Lucas C et al (2010) Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given. Microb Cell Factor 9:82. doi:10.1186/1475-2859-9-82
Google Scholar
Tzamarias D, Struhl K (1994) Functional dissection of the yeast Cyc8–Tupl transcriptional co-repressor complex. Nature 369:758–761
CAS
PubMed
CrossRef
Google Scholar
Tzamarias D, Struhl K (1995) Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev 9:821–831
CAS
PubMed
CrossRef
Google Scholar
Vagnoli P, Bisson LF (1998) The SKS1 gene of Saccharomyces cerevisiae is required for long-term adaptation of snf3 null strains to low glucose. Yeast 14:359–369
CAS
PubMed
CrossRef
Google Scholar
Van Zeebroeck G, Bonini BM, Versele M et al (2009) Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor. Nat Chem Biol 5:45–52
PubMed
CrossRef
CAS
Google Scholar
Varanasi US, Klis M, Mikesell PB et al (1996) The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits. Mol Cell Biol 16:6707–6714
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Verghese J, Abrams J, Wang Y et al (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76:115–158
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Verwaal R, Paalman JWG, Hogenkamp A et al (2002) HXT5 expression is determined by growth rates in Saccharomyces cerevisiae. Yeast 19:1029–1038
CAS
PubMed
CrossRef
Google Scholar
Vilella F, Herrero E, Torres J et al (2005) Pkc1 and the upstream elements of the cell integrity pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, are required for cellular responses to oxidative stress. J Biol Chem 280:9149–9159
CAS
PubMed
CrossRef
Google Scholar
Wahi M, Komachi K, Johnson AD (1998) Gene Regulation by the Yeast Ssn6-Tup1 Corepressor. Cold Spring Harb Symp Quant Biol 63:447–458
CAS
PubMed
CrossRef
Google Scholar
Watson AD, Edmondson DG, Bone JR et al (2000) Ssn6-Tup1 interacts with class I histone deacetylases required for repression. Genes Dev 14:2737–2744
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Weindling E, Bar-Nun S (2015) Sir2 links the unfolded protein response and the heat shock response in a stress response network. Biochem Biophys Res Commun 457:473–478
CAS
PubMed
CrossRef
Google Scholar
Weinhandl K, Winkler M, Glieder A et al (2014) Carbon source dependent promoters in yeasts. Microbiol Cell Fact 13(5):1–17
Google Scholar
Westergaard SL, Oliveira AP, Bro C et al (2007) A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 96:134–145
CAS
PubMed
CrossRef
Google Scholar
Westerheide SD, Raynes R, Powell C et al (2012) HSF transcription factor family, heat shock response, and protein intrinsic disorder. Curr Protein Pept Sci 13:86–103
CAS
PubMed
CrossRef
Google Scholar
Westholm JO, Nordberg N, Muren E et al (2008) Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. BMC Genomics 9:601. doi:10.1186/1471-2164-9-601
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Wickner RB, Edskes HK, Kryndushkin D et al (2011) Prion diseases of yeast: amyloid structure and biology. Semin Cell Dev Biol 22:469–475
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wieczorke R, Kampe S, Weierstall T et al (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128
CAS
PubMed
CrossRef
Google Scholar
Wilson WA, Roach PJ (2002) Nutrient-regulated protein kinases in budding yeast. Cell 111:155–158
CAS
PubMed
CrossRef
Google Scholar
Wilson WA, Hawley SA, Hardie DG (1996) Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP: ATP ratio. Curr Biol 6:1426–1434
CAS
PubMed
CrossRef
Google Scholar
Wong KH, Struhl K (2011) The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes Dev 25(23):2525–2539
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469
CAS
PubMed
CrossRef
Google Scholar
Wu J, Trumbly RJ (1998) Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site. Yeast 14:985–1000
CAS
PubMed
CrossRef
Google Scholar
Wu J, Suka N, Carlson M et al (2001) TUP1 utilizes histone H3/H2B–specific HDA1 deacetylase to repress gene activity in yeast. Mol Cell 7:117–126
CAS
PubMed
CrossRef
Google Scholar
Wysocki R, Chery CC, Wawrzycka D et al (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40:1391–1401
CAS
PubMed
CrossRef
Google Scholar
Xiong Y, Lei QY, Zhao S et al (2011) Regulation of glycolysis and gluconeogenesis by acetylation of PKM and PEPCK. Cold Spring Harb Symp Quant Biol 76:285–289
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yang Z, Bisson LF (1996) The SKS1 protein kinase is a multicopy suppressor of the snf3 mutation of Saccharomyces cerevisiae. Yeast 12:1407–1419
CAS
PubMed
CrossRef
Google Scholar
Young ET, Dombek KM, Tachibana C et al (2003) Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J Biol Chem 278:26146–26158
CAS
PubMed
CrossRef
Google Scholar