Skip to main content

Water Transport in Yeasts

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 892)

Abstract

Water moves across membranes through the lipid bilayer and through aquaporins, in this case in a regulated manner. Aquaporins belong to the MIP superfamily and two subfamilies are represented in yeasts: orthodox aquaporins considered to be specific water channels and aquaglyceroporins (heterodox aquaporins). In Saccharomyces cerevisiae genome, four aquaporin isoforms were identified, two of which are genetically close to orthodox aquaporins (ScAqy1 and ScAqy2) and the other two are more closely related to the aquaglyceroporins (ScFps1 and ScAqy3). Advances in the establishment of water channels structure are reviewed in this chapter in relation with the mechanisms of selectivity, conductance and gating. Aquaporins are important for key aspects of yeast physiology. They have been shown to be involved in sporulation, rapid freeze-thaw tolerance, osmo-sensitivity, and modulation of cell surface properties and colony morphology, although the underlying exact mechanisms are still unknown.

Keywords

  • Aquaporins
  • Aquaglyceroporins
  • Genome sequence
  • Water transport

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25304-6_5
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-25304-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2

References

  • Abascal F, Irisarri I, Zardoya R (2014) Diversity and evolution of membrane intrinsic proteins. Biochim Biophys Acta 1840:1468–1481

    CAS  CrossRef  PubMed  Google Scholar 

  • Ahmadpour D, Geijer C, Tamas MJ, Lindkvist-Petersson K, Hohmann S (2014) Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins. Biochim Biophys Acta 1840:1482–1491

    CAS  CrossRef  PubMed  Google Scholar 

  • Akao T, Yashiro I, Hosoyama A, Kitagaki H, Horikawa H et al (2011) Whole-genome sequencing of sake yeast saccharomyces cerevisiae Kyokai no. 7. DNA Res 18:423–434

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bonhivers M, Carbrey JM, Gould SJ, Agre P (1998) Aquaporins in Saccharomyces: genetic and functional distinctions between laboratory and wild-type strains. J Biol Chem 273:27565–27572

    CAS  CrossRef  PubMed  Google Scholar 

  • Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st century biology. Genetics 189:695–704

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bussey H, Storms RK, Ahmed A, Albermann K, Allen E et al (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI. Nature 387:103–105

    CAS  PubMed  Google Scholar 

  • Carbrey JM, Bonhivers M, Boeke JD, Agre P (2001) Aquaporins in Saccharomyces: characterization of a second functional water channel protein. Proc Natl Acad Sci U S A 98:1000–1005

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Carbrey JM, Gorelick-Feldman DA, Kozono D, Praetorius J, Nielsen S et al (2003) Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci 100:2945–2950

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764

    CAS  CrossRef  PubMed  Google Scholar 

  • Coury LA, Hiller M, Mathai JC, Jones EW, Zeidel ML et al (1999) Water transport across yeast vacuolar and plasma membrane-targeted secretory vesicles occurs by passive diffusion. J Bacteriol 181:4437–4440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Bastien DA (2012) Molecular dynamics simulation and bioinformatics study on yeast aquaporin Aqy1 from Pichia pastoris. Int J Biol Sci 8:1026–1035

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Curtin CD, Borneman AR, Chambers PJ, Pretorius IS (2012) De-novo assembly and analysis of the heterozygous triploid genome of the wine spoilage yeast Dekkera bruxellensis AWRI1499. PLoS One 7:e33840

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Daniels MJ, Wood MR, Yeager M (2006) In vivo functional assay of a recombinant aquaporin in Pichia pastoris. Appl Environ Microbiol 72:1507–1514

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • de Groot BL, Grubmuller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357

    CrossRef  PubMed  Google Scholar 

  • de Groot BL, Grubmuller H (2005) The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr Opin Struct Biol 15:176–183

    CrossRef  PubMed  Google Scholar 

  • de Groot BL, Frigato T, Helms V, Grubmuller H (2003) The mechanism of proton exclusion in the aquaporin-1 water channel. J Mol Biol 333:279–293

    CrossRef  PubMed  Google Scholar 

  • De Schutter K, Lin Y-C, Tiels P, Van Hecke A, Glinka S et al (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566

    CrossRef  PubMed  Google Scholar 

  • Dujon B (2010) Yeast evolutionary genomics. Nat Rev Genet 11:512–524

    CAS  CrossRef  PubMed  Google Scholar 

  • Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S et al (2004) Genome evolution in yeasts. Nature 430:35–44

    CrossRef  PubMed  Google Scholar 

  • Dynowski M, Mayer M, Moran O, Ludewig U (2008) Molecular determinants of ammonia and urea conductance in plant aquaporin homologs. FEBS Lett 582:2458–2462

    CAS  CrossRef  PubMed  Google Scholar 

  • Farmer REL, Macey RI (1970) Perturbation of red cell volume: rectification of osmotic flow. Biochim Biophys Acta Biomembr 196:53–65

    CAS  CrossRef  Google Scholar 

  • Finkelstein A (1984) Water movement through membrane channels. In: Felix B (ed) Current topics in membranes and transport. Academic Press, New York, pp 295–308

    Google Scholar 

  • Fischer G, Kosinska-Eriksson U, Aponte-Santamaria C, Palmgren M, Geijer C et al (2009) Crystal structure of a yeast aquaporin at 1.15 angstrom reveals a novel gating mechanism. PLoS Biol 7:e1000130

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Furukawa K, Sidoux‐Walter F, Hohmann S (2009) Expression of the yeast aquaporin Aqy2 affects cell surface properties under the control of osmoregulatory and morphogenic signalling pathways. Mol Microbiol 74:1272–1286

    CAS  CrossRef  PubMed  Google Scholar 

  • Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45

    CAS  CrossRef  PubMed  Google Scholar 

  • Hooijmaijers C, Rhee JY, Kwak KJ, Chung GC, Horie T et al (2012) Hydrogen peroxide permeability of plasma membrane aquaporins of Arabidopsis thaliana. J Plant Res 125:147–153

    CAS  CrossRef  PubMed  Google Scholar 

  • Hub JS, Grubmuller H, de Groot BL (2009) Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? Handb Exp Pharmacol 190:57–76

    CAS  CrossRef  Google Scholar 

  • Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P et al (2002) Characterization of aquaporin-6 as a nitrate channel in mammalian cells requirement of pore-lining residue threonine 63. J Biol Chem 277:39873–39879

    CAS  CrossRef  PubMed  Google Scholar 

  • Ishibashi K, Kondo S, Hara S, Morishita Y (2011) The evolutionary aspects of aquaporin family. Am J Physiol Regul Integr Comp Physiol 300:R566–R576

    CAS  CrossRef  PubMed  Google Scholar 

  • Ishibashi K, Tanaka Y, Morishita Y (2014) The role of mammalian superaquaporins inside the cell. Biochim Biophys Acta 1840:1507–1512

    CAS  CrossRef  PubMed  Google Scholar 

  • Johnston M, Hillier L, Riles L, Albermann K, André B et al (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature 387:87–90

    CAS  CrossRef  PubMed  Google Scholar 

  • Jung JS, Preston GM, Smith BL, Guggino WB, Agre P (1994) Molecular structure of the water channel through aquaporin CHIP the hourglass model. J Biol Chem 269:14648–14654

    CAS  PubMed  Google Scholar 

  • Kaldenhoff R, Fischer M (2006) Aquaporins in plants. Acta Physiol 187:169–176

    CAS  CrossRef  Google Scholar 

  • Karlsson M, Fotiadis D, Sjövall S, Johansson I, Hedfalk K et al (2003) Reconstitution of water channel function of an aquaporin overexpressed and purified from Pichia pastoris. FEBS Lett 537:68–72

    CAS  CrossRef  PubMed  Google Scholar 

  • Karpel JE, Bisson LF (2006) Aquaporins in Saccharomyces cerevisiae wine yeast. FEMS Microbiol Lett 257:117–123

    CAS  CrossRef  PubMed  Google Scholar 

  • Klein N, Neumann J, O’Neil JD, Schneider D (2014) Folding and stability of the aquaglyceroporin GlpF: implications for human aqua(glycero)porin diseases. Biochim Biophys Acta 1848:622–633

    CrossRef  PubMed  Google Scholar 

  • Kruse E, Uehlein N, Kaldenhoff R (2006) The aquaporins. Genome Biol 7:206

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Laize V, Gobin R, Rousselet G, Badier C, Hohmann S et al (1999) Molecular and functional study of AQY1 from Saccharomyces cerevisiae: role of the C-terminal domain. Biochem Biophys Res Commun 257:139–144

    CAS  CrossRef  PubMed  Google Scholar 

  • Laizé V, Tacnet F, Ripoche P, Hohmann S (2000) Polymorphism of Saccharomyces cerevisiae aquaporins. Yeast 16:897–903

    CrossRef  PubMed  Google Scholar 

  • Leitao L, Prista C, Loureiro-Dias MC, Moura TF, Soveral G (2014) The grapevine tonoplast aquaporin TIP2;1 is a pressure gated water channel. Biochem Biophys Res Commun 450:289–294

    CAS  CrossRef  PubMed  Google Scholar 

  • Macey R, Karan D, Farmer RL (1972) Properties of water channels in human red cells. In: Kreuzer F, Slegers JFG (eds) Biomembranes: passive permeability of cell membranes. Springer US, Boston, pp 331–340

    Google Scholar 

  • Madeira A, Leitão L, Soveral G, Dias P, Prista C et al (2010) Effect of ethanol on fluxes of water and protons across the plasma membrane of Saccharomyces cerevisiae. FEMS Yeast Res 10:252–258

    CAS  CrossRef  PubMed  Google Scholar 

  • Maurel C (2007) Plant aquaporins: novel functions and regulation properties. FEBS Lett 581:2227–2236

    CAS  CrossRef  PubMed  Google Scholar 

  • Maurel C, Reizer J, Schroeder JI, Chrispeels MJ, Saier MH (1994) Functional characterization of the Escherichia coli glycerol facilitator, GlpF, in Xenopus oocytes. J Biol Chem 269:11869–11872

    CAS  PubMed  Google Scholar 

  • Meyrial V, Laize V, Gobin R, Ripoche P, Hohmann S et al (2001) Existence of a tightly regulated water channel in Saccharomyces cerevisiae. Eur J Biochem 268:334–343

    CAS  CrossRef  PubMed  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Zhao F-J, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Moura T, Macey R, Chien D, Karan D, Santos H (1984) Thermodynamics of all-or-none water channel closure in red cells. J Membr Biol 81:105–111

    CAS  CrossRef  PubMed  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P et al (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    CAS  CrossRef  PubMed  Google Scholar 

  • Navarro-Ródenas A, Ruíz-Lozano JM, Kaldenhoff R, Morte A (2012) The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore for water and CO2 transport. Mol Plant-Microbe Interact 25:259–266

    CrossRef  PubMed  Google Scholar 

  • Nehls U, Dietz S (2014) Fungal aquaporins: cellular functions and ecophysiological perspectives. Appl Microbiol Biotechnol 98:8835–8851

    CAS  CrossRef  PubMed  Google Scholar 

  • Novo M, Bigey F, Beyne E, Galeote V, Gavory F et al (2009) Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A 106:16333–16338

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Paganelli CV, Solomon AK (1957) The rate of exchange of tritiated water across the human red cell membrane. J Gen Physiol 41:259–277

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Patel D (2013) Characterization of vacuole aquaporin function and its implication in membrane fission. Masters thesis Concordia University, Montreal, Quebec, Canada http://spectrum.library.concordia.ca/977797/1/Patel_MSc_F2013.pdf

  • Pettersson N, Filipsson C, Becit E, Brive L, Hohmann S (2005) Aquaporins in yeasts and filamentous fungi. Biol Cell 97:487–500

    CAS  CrossRef  PubMed  Google Scholar 

  • Pettersson N, Hagstrom J, Bill RM, Hohmann S (2006) Expression of heterologous aquaporins for functional analysis in Saccharomyces cerevisiae. Curr Genet 50:247–255

    CAS  CrossRef  PubMed  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    CAS  CrossRef  PubMed  Google Scholar 

  • Prudent S, Marty F, Charbonnier M (2005) The yeast osmosensitive mutant fps1Delta transformed by the cauliflower BobTIP1;1 aquaporin withstand a hypo-osmotic shock. FEBS Lett 579:3872–3880

    CAS  CrossRef  PubMed  Google Scholar 

  • Sidel VW, Solomon AK (1957) Entrance of water into human red cells under an osmotic pressure gradient. J Gen Physiol 41:243–257

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sidoux-Walter F, Pettersson N, Hohmann S (2004) The Saccharomyces cerevisiae aquaporin Aqy1 is involved in sporulation. Proc Natl Acad Sci U S A 101:17422–17427

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Soveral G, Macey RI, Moura TF (1997) Membrane stress causes inhibition of water channels in brush border membrane vesicles from kidney proximal tubule. Biol Cell 89:275–282

    CAS  CrossRef  PubMed  Google Scholar 

  • Soveral G, Veiga A, Loureiro-Dias MC, Tanghe A, Van Dijck P et al (2006) Water channels are important for osmotic adjustments of yeast cells at low temperature. Microbiology 152:1515–1521

    CAS  CrossRef  PubMed  Google Scholar 

  • Soveral G, Madeira A, Loureiro-Dias MC, Moura TF (2007) Water transport in intact yeast cells as assessed by fluorescence self-quenching. Appl Environ Microbiol 73:2341–2343

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Soveral G, Madeira A, Loureiro-Dias MC, Moura TF (2008) Membrane tension regulates water transport in yeast. Biochim Biophys Acta 1778:2573–2579

    CAS  CrossRef  PubMed  Google Scholar 

  • Soveral G, Prista C, Moura TF, Loureiro-Dias MC (2011) Yeast water channels: an overview of orthodox aquaporins. Biol Cell 103:35–54

    CAS  CrossRef  Google Scholar 

  • Št’ovíček V, Váchová L, Kuthan M, Palková Z (2010) General factors important for the formation of structured biofilm-like yeast colonies. Fungal Genet Biol 47:1012–1022

    CrossRef  PubMed  Google Scholar 

  • Sui H, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    CAS  CrossRef  PubMed  Google Scholar 

  • Takata K, Matsuzaki T, Tajika Y (2004) Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cytochem 39:1–83

    CAS  CrossRef  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Tanghe A, Van Dijck P, Dumortier F, Teunissen A, Hohmann S et al (2002) Aquaporin expression correlates with freeze tolerance in baker’s yeast, and overexpression improves freeze tolerance in industrial strains. Appl Environ Microbiol 68:5981–5989

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Tanghe A, Carbrey JM, Agre P, Thevelein JM, Van Dijck P (2005) Aquaporin expression and freeze tolerance in Candida albicans. Appl Environ Microbiol 71:6434–6437

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Tanghe A, Van Dijck P, Thevelein JM (2006) Why do microorganisms have aquaporins? Trends Microbiol 14:78–85

    CrossRef  PubMed  Google Scholar 

  • Tornroth-Horsefield S, Hedfalk K, Fischer G, Lindkvist-Petersson K, Neutze R (2010) Structural insights into eukaryotic aquaporin regulation. FEBS Lett 584:2580–2588

    CrossRef  PubMed  Google Scholar 

  • Vieira FL, Sha’afi RI, Solomon AK (1970) The state of water in human and dog red cell membranes. J Gen Physiol 55:451–466

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Schulten K, Tajkhorshid E (2005) What makes an aquaporin a glycerol channel? A comparative study of AqpZ and GlpF. Structure 13:1107–1118

    CAS  CrossRef  PubMed  Google Scholar 

  • Will JL, Kim HS, Clarke J, Painter JC, Fay JC et al (2010) Incipient balancing selection through adaptive loss of aquaporins in natural Saccharomyces cerevisiae populations. PLoS Genet 6:e1000893

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzana Sabir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sabir, F., Prista, C., Madeira, A., Moura, T., Loureiro-Dias, M.C., Soveral, G. (2016). Water Transport in Yeasts. In: Ramos, J., Sychrová, H., Kschischo, M. (eds) Yeast Membrane Transport. Advances in Experimental Medicine and Biology, vol 892. Springer, Cham. https://doi.org/10.1007/978-3-319-25304-6_5

Download citation