Skip to main content

Proton Transport and pH Control in Fungi

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 892)

Abstract

Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi.

Keywords

  • S. cerevisiae
  • Proton pump
  • Cytosolic pH
  • Organelle acidification
  • pH sensing and growth
  • pH signaling
  • V-ATPase
  • Pma1

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25304-6_3
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-25304-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3

References

  • Ali R, Brett CL, Mukherjee S, Rao R (2004) Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast. J Biol Chem 279(6):4498–4506

    CAS  PubMed  CrossRef  Google Scholar 

  • Ambesi A, Miranda M, Petrov VV, Slayman CW (2000) Biogenesis and function of the yeast plasma-membrane H(+)-ATPase. J Exp Biol 203(Pt 1):155–160

    CAS  PubMed  Google Scholar 

  • Arino J, Ramos J, Sychrova H (2010) Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev 74(1):95–120. doi:74/1/95 [pii]10.1128/MMBR.00042-09

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Auer M, Scarborough GA, Kuhlbrandt W (1998) Three-dimensional map of the plasma membrane H+-ATPase in the open conformation. Nature 392(6678):840–843. doi:10.1038/33967

    CAS  PubMed  CrossRef  Google Scholar 

  • Auesukaree C, Tochio H, Shirakawa M, Kaneko Y, Harashima S (2005) Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae. J Biol Chem 280(26):25127–25133. doi:M414579200 [pii]10.1074/jbc.M414579200

    CAS  PubMed  CrossRef  Google Scholar 

  • Bader T, Schroppel K, Bentink S, Agabian N, Kohler G, Morschhauser J (2006) Role of calcineurin in stress resistance, morphogenesis, and virulence of a Candida albicans wild-type strain. Infect Immun 74(7):4366–4369. doi:74/7/4366 [pii]10.1128/IAI.00142-06

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Balakrishna AM, Basak S, Manimekalai MS, Gruber G (2014) Crystal structure of subunits D and F in complex give insight into energy transmission of the eukaryotic V-ATPase from Saccharomyces cerevisiae. J Biol Chem. doi:M114.622688 [pii]10.1074/jbc.M114.622688

  • Banuelos MA, Sychrova H, Bleykasten-Grosshans C, Souciet JL, Potier S (1998) The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology 144(Pt 10):2749–2758

    CAS  PubMed  Google Scholar 

  • Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24(7):400–406. doi:S0962-8924(14)00036-1 [pii]10.1016/j.tcb.2014.03.003

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Beauvoit B, Rigoulet M, Raffard G, Canioni P, Guerin B (1991) Differential sensitivity of the cellular compartments of Saccharomyces cerevisiae to protonophoric uncoupler under fermentative and respiratory energy supply. Biochemistry (Mosc) 30(47):11212–11220

    CAS  CrossRef  Google Scholar 

  • Benlekbir S, Bueler SA, Rubinstein JL (2012) Structure of the vacuolar-type ATPase from Saccharomyces cerevisiae at 11-A resolution. Nat Struct Mol Biol 19(12):1356–1362. doi:nsmb.2422 [pii]10.1038/nsmb.2422

    CAS  PubMed  CrossRef  Google Scholar 

  • Bennett-Lovsey RM, Herbert AD, Sternberg MJ, Kelley LA (2008) Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70(3):611–625. doi:10.1002/prot.21688

    CAS  PubMed  CrossRef  Google Scholar 

  • Bensen ES, Martin SJ, Li M, Berman J, Davis DA (2004) Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 54(5):1335–1351. doi:MMI4350 [pii]10.1111/j.1365-2958.2004.04350.x

    CAS  PubMed  CrossRef  Google Scholar 

  • Bond S, Forgac M (2008) The Ras/cAMP/protein kinase A pathway regulates glucose-dependent assembly of the vacuolar (H+)-ATPase in yeast. J Biol Chem 283(52):36513–36521. doi:M805232200 [pii]10.1074/jbc.M805232200

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bowman EJ, Bowman BJ (2000) Cellular role of the V-ATPase in Neurospora crassa: analysis of mutants resistant to concanamycin or lacking the catalytic subunit A. J Exp Biol 203(Pt 1):97–106

    CAS  PubMed  Google Scholar 

  • Bowman BJ, Bowman EJ (2002) Mutations in subunit C of the vacuolar ATPase confer resistance to bafilomycin and identify a conserved antibiotic binding site. J Biol Chem 277(6):3965–3972

    CAS  PubMed  CrossRef  Google Scholar 

  • Bowman BJ, Allen R, Wechser MA, Bowman EJ (1988a) Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-2 encoding the 57-kDa polypeptide and comparison to vma-1. J Biol Chem 263(28):14002–14007

    CAS  PubMed  Google Scholar 

  • Bowman EJ, Tenney K, Bowman BJ (1988b) Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-1 encoding the 67-kDa subunit reveals homology to other ATPases. J Biol Chem 263(28):13994–14001

    CAS  PubMed  Google Scholar 

  • Bowman EJ, Siebers A, Altendorf K (1988c) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A 85(21):7972–7976

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bowman EJ, O’Neill FJ, Bowman BJ (1997) Mutations of pma-1, the gene encoding the plasma membrane H+-ATPase of Neurospora crassa, suppress inhibition of growth by concanamycin A, a specific inhibitor of vacuolar ATPases. J Biol Chem 272(23):14776–14786

    CAS  PubMed  CrossRef  Google Scholar 

  • Bowman EJ, Kendle R, Bowman BJ (2000) Disruption of vma-1, the gene encoding the catalytic subunit of the vacuolar H(+)-ATPase, causes severe morphological changes in Neurospora crassa. J Biol Chem 275(1):167–176

    CAS  PubMed  CrossRef  Google Scholar 

  • Bowman EJ, Gustafson KR, Bowman BJ, Boyd MR (2003) Identification of a new chondropsin class of antitumor compound that selectively inhibits V-ATPases. J Biol Chem 278(45):44147–44152. doi:10.1074/jbc.M306595200M306595200 [pii]

    CAS  PubMed  CrossRef  Google Scholar 

  • Bowman EJ, Graham LA, Stevens TH, Bowman BJ (2004) The bafilomycin/concanamycin binding site in subunit c of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae. J Biol Chem 279(32):33131–33138

    CAS  PubMed  CrossRef  Google Scholar 

  • Boysen JH, Mitchell AP (2006) Control of Bro1-domain protein Rim20 localization by external pH, ESCRT machinery, and the Saccharomyces cerevisiae Rim101 pathway. Mol Biol Cell 17(3):1344–1353. doi:E05-10-0949 [pii]10.1091/mbc.E05-10-0949

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Braun NA, Morgan B, Dick TP, Schwappach B (2010) The yeast CLC protein counteracts vesicular acidification during iron starvation. J Cell Sci 123(Pt 13):2342–2350. doi:jcs.068403 [pii]10.1242/jcs.068403

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Brett CL, Tukaye DN, Mukherjee S, Rao R (2005a) The yeast endosomal Na+K+/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16(3):1396–1405

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Brett CL, Donowitz M, Rao R (2005b) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288(2):C223–C239

    CAS  PubMed  CrossRef  Google Scholar 

  • Brett CL, Kallay L, Hua Z, Green R, Chyou A, Zhang Y, Graham TR, Donowitz M, Rao R (2011) Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae. PLoS One 6(3):e17619. doi:10.1371/journal.pone.0017619

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Calahorra M, Martinez GA, Hernandez-Cruz A, Pena A (1998) Influence of monovalent cations on yeast cytoplasmic and vacuolar pH. Yeast 14(6):501–515

    CAS  PubMed  CrossRef  Google Scholar 

  • Carman GM, Henry SA (2007) Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. J Biol Chem 282(52):37293–37297. doi:R700038200 [pii]10.1074/jbc.R700038200

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Carmelo V, Santos H, Sa-Correia I (1997) Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta 1325(1):63–70

    CAS  PubMed  CrossRef  Google Scholar 

  • Casamayor A, Serrano R, Platara M, Casado C, Ruiz A, Arino J (2012) The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress. Biochem J 444(1):39–49. doi:BJ20112099 [pii]10.1042/BJ20112099

    CAS  PubMed  CrossRef  Google Scholar 

  • Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11(1):50–61. doi:nrm2820 [pii]10.1038/nrm2820

    CAS  PubMed  CrossRef  Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12(2):323–337

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chan CY, Parra KJ (2014) Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent V-ATPase reassembly. J Biol Chem. doi:M114.569855 [pii]10.1074/jbc.M114.569855

  • Chang A, Slayman CW (1991) Maturation of the yeast plasma membrane [H+]ATPase involves phosphorylation during intracellular transport. J Cell Biol 115(2):289–295

    CAS  PubMed  CrossRef  Google Scholar 

  • Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38(2):254–299. doi:10.1111/1574-6976.12065

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cornet M, Gaillardin C (2014) pH signaling in human fungal pathogens: a new target for antifungal strategies. Eukaryot Cell 13(3):342–352. doi:EC.00313-13 [pii]10.1128/EC.00313-13

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Davis DA (2009) How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol 12(4):365–370. doi:S1369-5274(09)00055-1 [pii]10.1016/j.mib.2009.05.006

    CAS  PubMed  CrossRef  Google Scholar 

  • Dechant R, Binda M, Lee SS, Pelet S, Winderickx J, Peter M (2010) Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 29(15):2515–2526. doi:emboj2010138 [pii]10.1038/emboj.2010.138

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dechant R, Saad S, Ibanez AJ, Peter M (2014) Cytosolic pH regulates cell growth through distinct GTPases, Arf1 and Gtr1, to promote Ras/PKA and TORC1 activity. Mol Cell 55(3):409–421. doi:S1097-2765(14)00484-5 [pii]10.1016/j.molcel.2014.06.002

    CAS  PubMed  CrossRef  Google Scholar 

  • Diakov TT, Kane PM (2010a) Regulation of vacuolar proton-translocating ATPase activity and assembly by extracellular pH. J Biol Chem 285(31):23771–23778. doi:M110.110122 [pii]10.1074/jbc.M110.110122

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Diakov TT, Kane PM (2010b) Regulation of V-ATPase activity and assembly by extracellular pH. J Biol Chem. doi:M110.110122 [pii]10.1074/jbc.M110.110122

  • Diakov TT, Tarsio M, Kane PM (2013) Measurement of vacuolar and cytosolic pH in vivo in yeast cell suspensions. J Vis Exp Apr 19(74). doi:10.3791/50261

  • Dickson VK, Silvester JA, Fearnley IM, Leslie AG, Walker JE (2006) On the structure of the stator of the mitochondrial ATP synthase. EMBO J 25(12):2911–2918

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Drose S, Bindseil KU, Bowman EJ, Siebers A, Zeeck A, Altendorf K (1993) Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry (Mosc) 32(15):3902–3906

    CAS  CrossRef  Google Scholar 

  • Dschida WJ, Bowman BJ (1992) Structure of the vacuolar ATPase from Neurospora crassa as determined by electron microscopy. J Biol Chem 267(26):18783–18789

    CAS  PubMed  Google Scholar 

  • Duex JE, Nau JJ, Kauffman EJ, Weisman LS (2006) Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell 5(4):723–731

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dunn SD, McLachlin DT, Revington M (2000) The second stalk of Escherichia coli ATP synthase. Biochim Biophys Acta 1458(2–3):356–363

    CAS  PubMed  CrossRef  Google Scholar 

  • Eraso P, Gancedo C (1987) Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Lett 224(1):187–192

    CAS  PubMed  CrossRef  Google Scholar 

  • Eraso P, Portillo F (1994) Molecular mechanism of regulation of yeast plasma membrane H(+)-ATPase by glucose. Interaction between domains and identification of new regulatory sites. J Biol Chem 269(14):10393–10399

    CAS  PubMed  Google Scholar 

  • Eraso P, Mazon MJ, Portillo F (2006) Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochim Biophys Acta 1758(2):164–170

    CAS  PubMed  CrossRef  Google Scholar 

  • Esteban O, Bernal RA, Donohoe M, Videler H, Sharon M, Robinson CV, Stock D (2008) Stoichiometry and localization of the stator subunits E and G in Thermus thermophilus H+-ATPase/synthase. J Biol Chem 283(5):2595–2603. doi:M704941200 [pii]10.1074/jbc.M704941200

    CAS  PubMed  CrossRef  Google Scholar 

  • Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8(11):917–929. doi:nrm2272 [pii]10.1038/nrm2272

    CAS  PubMed  CrossRef  Google Scholar 

  • Garciadeblas B, Rubio F, Quintero FJ, Banuelos MA, Haro R, Rodriguez-Navarro A (1993) Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol Gen Genet 236(2–3):363–368

    CAS  PubMed  CrossRef  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11(12):4241–4257

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gillies RJ, Ugurbil K, den Hollander JA, Shulman RG (1981) 31P NMR studies of intracellular pH and phosphate metabolism during cell division cycle of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 78(4):2125–2129

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Goossens A, de La Fuente N, Forment J, Serrano R, Portillo F (2000) Regulation of yeast H(+)-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters. Mol Cell Biol 20(20):7654–7661

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gruber G, Wieczorek H, Harvey WR, Muller V (2001) Structure-function relationships of A-, F- and V-ATPases. J Exp Biol 204(Pt 15):2597–2605

    CAS  PubMed  Google Scholar 

  • Gruber G, Manimekalai MS, Mayer F, Muller V (2014) ATP synthases from archaea: the beauty of a molecular motor. Biochim Biophys Acta 1837(6):940–952. doi:S0005-2728(14)00091-7 [pii]10.1016/j.bbabio.2014.03.004

    CAS  PubMed  CrossRef  Google Scholar 

  • Haro R, Garciadeblas B, Rodriguez-Navarro A (1991) A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett 291(2):189–191. doi:0014-5793(91)81280-L [pii]

    Google Scholar 

  • Hayek SR, Lee SA, Parra KJ (2014) Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase) for anti-fungal therapy. Front Pharmacol 5:4. doi:10.3389/fphar.2014.00004

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Henderson KA, Hughes AL, Gottschling DE (2014) Mother-daughter asymmetry of pH underlies aging and rejuvenation in yeast. Elife 3:e03504. doi:10.7554/eLife.03504

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Herrador A, Herranz S, Lara D, Vincent O (2010) Recruitment of the ESCRT machinery to a putative seven-transmembrane-domain receptor is mediated by an arrestin-related protein. Mol Cell Biol 30(4):897–907. doi:MCB.00132-09 [pii]10.1128/MCB.00132-09

    CAS  PubMed  CrossRef  Google Scholar 

  • Herrador A, Leon S, Haguenauer-Tsapis R, Vincent O (2013) A mechanism for protein monoubiquitination dependent on a trans-acting ubiquitin binding domain. J Biol Chem 288(23):16206–16211. doi:C113.452250 [pii]10.1074/jbc.C113.452250

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Herranz S, Rodriguez JM, Bussink HJ, Sanchez-Ferrero JC, Arst HN Jr, Penalva MA, Vincent O (2005) Arrestin-related proteins mediate pH signaling in fungi. Proc Natl Acad Sci U S A 102(34):12141–12146. doi:0504776102 [pii]10.1073/pnas.0504776102

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hirata R, Takatsuki A (2001) Role of organelle acidification in intracellular protein transport. RIKEN Rev 41:90–91

    CAS  Google Scholar 

  • Holyoak CD, Stratford M, McMullin Z, Cole MB, Crimmins K, Brown AJ, Coote PJ (1996) Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62(9):3158–3164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Chang A (2011) pH-dependent cargo sorting from the Golgi. J Biol Chem 286(12):10058–10065. doi:M110.197889 [pii]10.1074/jbc.M110.197889

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hughes AL, Gottschling DE (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492(7428):261–265. doi:nature11654 [pii]10.1038/nature11654

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS, Guan KL (2015) Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 347(6218):194–198. doi:science.1259472 [pii]10.1126/science.1259472

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jin R, Dobry CJ, McCown PJ, Kumar A (2008) Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol Biol Cell 19(1):284–296. doi:E07-05-0519 [pii]10.1091/mbc.E07-05-0519

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Johnston M (1999) Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet 15(1):29–33

    CAS  PubMed  CrossRef  Google Scholar 

  • Johnston M, Carlson M (1992) Regulation of carbon and phosphate utilization. The molecular and cellular biology of the yeast Saccharomyces. Gene Expr 2:193–281

    Google Scholar 

  • Kane PM (1995) Disassembly and reassembly of the yeast vacuolar H(+)-ATPase in vivo. J Biol Chem 270(28):17025–17032

    CAS  PubMed  Google Scholar 

  • Kane PM (2006) The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev 70(1):177–191

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kane PM (2007) The long physiological reach of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 39(5–6):415–421. doi:10.1007/s10863-007-9112-z

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kane PM, Smardon AM (2003) Assembly and regulation of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 35(4):313–321

    CAS  PubMed  CrossRef  Google Scholar 

  • Kawahata M, Masaki K, Fujii T, Iefuji H (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6(6):924–936

    CAS  PubMed  CrossRef  Google Scholar 

  • Kawasaki-Nishi S, Bowers K, Nishi T, Forgac M, Stevens TH (2001a) The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276(50):47411–47420

    CAS  PubMed  CrossRef  Google Scholar 

  • Kawasaki-Nishi S, Nishi T, Forgac M (2001b) Yeast V-ATPase complexes containing different isoforms of the 100-kDa a-subunit differ in coupling efficiency and in vivo dissociation. J Biol Chem 276(21):17941–17948

    CAS  PubMed  CrossRef  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4(3):363–371. doi:nprot.2009.2 [pii]10.1038/nprot.2009.2

    CAS  PubMed  CrossRef  Google Scholar 

  • Kibak H, Taiz L, Starke T, Bernasconi P, Gogarten JP (1992) Evolution of structure and function of V-ATPases. J Bioenerg Biomembr 24(4):415–424

    CAS  PubMed  CrossRef  Google Scholar 

  • Kitagawa N, Mazon H, Heck AJ, Wilkens S (2008) Stoichiometry of the peripheral stalk subunits E and G of yeast V1-ATPase determined by mass spectrometry. J Biol Chem 283(6):3329–3337

    CAS  PubMed  CrossRef  Google Scholar 

  • Kondapalli KC, Prasad H, Rao R (2014) An inside job: how endosomal Na(+)/H(+) exchangers link to autism and neurological disease. Front Cell Neurosci 8:172. doi:10.3389/fncel.2014.00172

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kuhlbrandt W, Zeelen J, Dietrich J (2002) Structure, mechanism, and regulation of the Neurospora plasma membrane H+-ATPase. Science 297(5587):1692–1696. doi:10.1126/science.10725741072574 [pii]

    CAS  PubMed  CrossRef  Google Scholar 

  • Kulkarny VV, Chavez-Dozal A, Rane HS, Jahng M, Bernardo SM, Parra KJ, Lee SA (2014) Quinacrine inhibits Candida albicans growth and filamentation at neutral pH. Antimicrob Agents Chemother 58(12):7501–7509. doi:AAC.03083-14 [pii]10.1128/AAC.03083-14

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kullas AL, Martin SJ, Davis D (2007) Adaptation to environmental pH: integrating the Rim101 and calcineurin signal transduction pathways. Mol Microbiol 66(4):858–871. doi:MMI5929 [pii]10.1111/j.1365-2958.2007.05929.x

    CAS  PubMed  CrossRef  Google Scholar 

  • Lam FH, Ghaderi A, Fink GR, Stephanopoulos G (2014) Biofuels. Engineering alcohol tolerance in yeast. Science 346(6205):71–75. doi:346/6205/71 [pii]10.1126/science.1257859

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lamb TM, Mitchell AP (2003) The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23(2):677–686

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lamb TM, Xu W, Diamond A, Mitchell AP (2001) Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J Biol Chem 276(3):1850–1856. doi:10.1074/jbc.M008381200M008381200 [pii]

    CAS  PubMed  CrossRef  Google Scholar 

  • Lau WC, Rubinstein JL (2012) Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 481(7380):214–218. doi:nature10699 [pii]10.1038/nature10699

    CAS  CrossRef  Google Scholar 

  • Lecchi S, Allen KE, Pardo JP, Mason AB, Slayman CW (2005) Conformational changes of yeast plasma membrane H+-ATPase during activation by glucose: role of Threonine-912 in the carboxy-terminal tail. Biochemistry (Mosc) 44(50):16624–16632. doi:10.1021/bi051555f

    CAS  CrossRef  Google Scholar 

  • Lecchi S, Nelson CJ, Allen KE, Swaney DL, Thompson KL, Coon JJ, Sussman MR, Slayman CW (2007) Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation. J Biol Chem 282(49):35471–35481

    CAS  PubMed  CrossRef  Google Scholar 

  • Li SC, Diakov TT, Rizzo JM, Kane PM (2012) Vacuolar H+-ATPase works in parallel with the HOG pathway to adapt Saccharomyces cerevisiae cells to osmotic stress. Eukaryot Cell 11(3):282–291. doi:EC.05198-11 [pii]10.1128/EC.05198-11

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Li SC, Diakov TT, Xu T, Tarsio M, Zhu W, Couoh-Cardel S, Weisman LS, Kane PM (2014) The signaling lipid PI(3,5)P(2) stabilizes V(1)-V(o) sector interactions and activates the V-ATPase. Mol Biol Cell 25(8):1251–1262. doi:mbc.E13-10-0563 [pii]10.1091/mbc.E13-10-0563

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Lu M, Sautin YY, Holliday LS, Gluck SL (2003) The glycolytic enzyme aldolase mediates assembly, expression and activity of V-ATPase. J Biol Chem 279:8732–8739

    Google Scholar 

  • Manolson MF, Wu B, Proteau D, Taillon BE, Roberts BT, Hoyt MA, Jones EW (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem 269(19):14064–14074

    CAS  PubMed  Google Scholar 

  • Martinez-Munoz GA, Kane P (2008) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283(29):20309–20319. doi:M710470200 [pii]10.1074/jbc.M710470200

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Martinez-Munoz GA, Pena A (2005) In situ study of K+ transport into the vacuole of Saccharomyces cerevisiae. Yeast 22(9):689–704

    CAS  PubMed  CrossRef  Google Scholar 

  • McCusker JH, Perlin DS, Haber JE (1987) Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol Cell Biol 7(11):4082–4088

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700

    CAS  PubMed  CrossRef  Google Scholar 

  • Mira NP, Lourenco AB, Fernandes AR, Becker JD, Sa-Correia I (2009) The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids. FEMS Yeast Res 9(2):202–216. doi:FYR473 [pii]10.1111/j.1567-1364.2008.00473.x

    CAS  PubMed  CrossRef  Google Scholar 

  • Mira NP, Teixeira MC, Sa-Correia I (2010) Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS 14(5):525–540. doi:10.1089/omi.2010.0072

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mollapour M, Fong D, Balakrishnan K, Harris N, Thompson S, Schuller C, Kuchler K, Piper PW (2004) Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative. Yeast 21(11):927–946. doi:10.1002/yea.1141

    CAS  PubMed  CrossRef  Google Scholar 

  • Moller JV, Nissen P, Sorensen TL, le Maire M (2005) Transport mechanism of the sarcoplasmic reticulum Ca2+-ATPase pump. Curr Opin Struct Biol 15(4):387–393. doi:S0959-440X(05)00122-3 [pii]10.1016/j.sbi.2005.06.005

    CAS  PubMed  CrossRef  Google Scholar 

  • Monk BC, Niimi M, Shepherd MG (1993) The Candida albicans plasma membrane and H(+)-ATPase during yeast growth and germ tube formation. J Bacteriol 175(17):5566–5574

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Monk BC, Mason AB, Abramochkin G, Haber JE, Seto-Young D, Perlin DS (1995) The yeast plasma membrane proton pumping ATPase is a viable antifungal target. I. Effects of the cysteine-modifying reagent omeprazole. Biochim Biophys Acta 1239(1):81–90

    PubMed  CrossRef  Google Scholar 

  • Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, Andersen JP, Vilsen B, Nissen P (2007) Crystal structure of the sodium-potassium pump. Nature 450(7172):1043–1049

    CAS  PubMed  CrossRef  Google Scholar 

  • Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B, Palmgren MG, Nissen P (2011) A structural overview of the plasma membrane Na+, K+-ATPase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol 12(1):60–70. doi:nrm3031 [pii]10.1038/nrm3031

    CAS  PubMed  CrossRef  Google Scholar 

  • Munn AL, Riezman H (1994) Endocytosis is required for the growth of vacuolar H(+)-ATPase-defective yeast: identification of six new END genes. J Cell Biol 127(2):373–386

    CAS  PubMed  CrossRef  Google Scholar 

  • Nass R, Rao R (1998) Novel localization of a Na+/H+ exchanger in a late endosomal compartment of yeast. Implications for vacuole biogenesis. J Biol Chem 273(33):21054–21060

    CAS  PubMed  CrossRef  Google Scholar 

  • Nass R, Rao R (1999) The yeast endosomal Na+/H+ exchanger, Nhx1, confers osmotolerance following acute hypertonic shock. Microbiology 145(Pt 11):3221–3228

    CAS  PubMed  CrossRef  Google Scholar 

  • Nelson H, Nelson N (1990) Disruption of genes encoding subunits of yeast vacuolar H(+)-ATPase causes conditional lethality. Proc Natl Acad Sci U S A 87(9):3503–3507

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nobile CJ, Solis N, Myers CL, Fay AJ, Deneault JS, Nantel A, Mitchell AP, Filler SG (2008) Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol 10(11):2180–2196. doi:CMI1198 [pii]10.1111/j.1462-5822.2008.01198.x

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Obara K, Kihara A (2014) Signaling events of the Rim101 pathway occur at the plasma membrane in a ubiquitination-dependent manner. Mol Cell Biol 34(18):3525–3534. doi:MCB.00408-14 [pii]10.1128/MCB.00408-14

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Ohira M, Smardon AM, Charsky CM, Liu J, Tarsio M, Kane PM (2006) The E and G subunits of the yeast V-ATPase interact tightly and are both present at more than one copy per V1 complex. J Biol Chem 281:22752–22760

    CAS  PubMed  CrossRef  Google Scholar 

  • Ohya Y, Umemoto N, Tanida I, Ohta A, Iida H, Anraku Y (1991) Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a Pet- phenotype are ascribable to defects of vacuolar membrane H(+)-ATPase activity. J Biol Chem 266(21):13971–13977

    CAS  PubMed  Google Scholar 

  • Olesen C, Picard M, Winther AM, Gyrup C, Morth JP, Oxvig C, Moller JV, Nissen P (2007) The structural basis of calcium transport by the calcium pump. Nature 450(7172):1036–1042

    CAS  PubMed  CrossRef  Google Scholar 

  • Oot RA, Wilkens S (2012) Subunit interactions at the V1-Vo interface in yeast vacuolar ATPase. J Biol Chem 287(16):13396–13406. doi:M112.343962 [pii]10.1074/jbc.M112.343962

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Orij R, Postmus J, Ter Beek A, Brul S, Smits GJ (2009) In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155(Pt 1):268–278. doi:155/1/268 [pii]10.1099/mic.0.022038-0

    CAS  PubMed  CrossRef  Google Scholar 

  • Orij R, Brul S, Smits GJ (2011) Intracellular pH is a tightly controlled signal in yeast. Biochim Biophys Acta 1810(10):933–944. doi:S0304-4165(11)00060-2 [pii]10.1016/j.bbagen.2011.03.011

    CAS  PubMed  CrossRef  Google Scholar 

  • Orij R, Urbanus ML, Vizeacoumar FJ, Giaever G, Boone C, Nislow C, Brul S, Smits GJ (2012) Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pH(c) in Saccharomyces cerevisiae. Genome Biol 13(9):R80. doi:gb-2012-13-9-r80 [pii]10.1186/gb-2012-13-9-r80

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Owegi MA, Pappas DL, Finch MW Jr, Bilbo SA, Resendiz CA, Jacquemin LJ, Warrier A, Trombley JD, McCulloch KM, Margalef KL, Mertz MJ, Storms JM, Damin CA, Parra KJ (2006) Identification of a domain in the V0 subunit d that is critical for coupling of the yeast vacuolar proton-translocating ATPase. J Biol Chem 281(40):30001–30014

    CAS  PubMed  CrossRef  Google Scholar 

  • Parra KJ, Kane PM (1998) Reversible association between the V1 and V0 domains of yeast vacuolar H+-ATPase is an unconventional glucose-induced effect. Mol Cell Biol 18(12):7064–7074

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Parra KJ, Keenan KL, Kane PM (2000) The H subunit (Vma13p) of the yeast V-ATPase inhibits the ATPase activity of cytosolic V1 complexes. J Biol Chem 275(28):21761–21767

    CAS  PubMed  CrossRef  Google Scholar 

  • Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, Brown GW, Kane PM, Hughes TR, Boone C (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22(1):62–69

    CAS  PubMed  CrossRef  Google Scholar 

  • Patenaude C, Zhang Y, Cormack B, Kohler J, Rao R (2013) Essential role for vacuolar acidification in Candida albicans virulence. J Biol Chem 288(36):26256–26264. doi:M113.494815 [pii]10.1074/jbc.M113.494815

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P (2007) Crystal structure of the plasma membrane proton pump. Nature 450(7172):1111–1114

    CAS  PubMed  CrossRef  Google Scholar 

  • Penalva MA, Arst HN Jr (2002) Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66(3):426–446

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Penalva MA, Tilburn J, Bignell E, Arst HN Jr (2008) Ambient pH gene regulation in fungi: making connections. Trends Microbiol 16(6):291–300. doi:S0966-842X(08)00090-5 [pii]10.1016/j.tim.2008.03.006

    CAS  PubMed  CrossRef  Google Scholar 

  • Penalva MA, Lucena-Agell D, Arst HN Jr (2014) Liaison alcaline: Pals entice non-endosomal ESCRTs to the plasma membrane for pH signaling. Curr Opin Microbiol 22C:49–59. doi:S1369-5274(14)00125-8 [pii]10.1016/j.mib.2014.09.005

    CrossRef  CAS  Google Scholar 

  • Perlin DS, Brown CL, Haber JE (1988) Membrane potential defect in hygromycin B-resistant pma1 mutants of Saccharomyces cerevisiae. J Biol Chem 263(34):18118–18122

    CAS  PubMed  Google Scholar 

  • Perlin DS, Harris SL, Seto-Young D, Haber JE (1989) Defective H(+)-ATPase of hygromycin B-resistant pma1 mutants from Saccharomyces cerevisiae. J Biol Chem 264(36):21857–21864

    CAS  PubMed  Google Scholar 

  • Perona R, Portillo F, Giraldez F, Serrano R (1990) Transformation and pH homeostasis of fibroblasts expressing yeast H(+)-ATPase containing site-directed mutations. Mol Cell Biol 10(8):4110–4115

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Perzov N, Nelson H, Nelson N (2000) Altered distribution of the yeast plasma membrane H+-ATPase as a feature of vacuolar H+-ATPase null mutants. J Biol Chem 275(51):40088–40095

    CAS  PubMed  CrossRef  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084

    CAS  PubMed  CrossRef  Google Scholar 

  • Plant PJ, Manolson MF, Grinstein S, Demaurex N (1999) Alternative mechanisms of vacuolar acidification in H(+)-ATPase-deficient yeast. J Biol Chem 274(52):37270–37279

    CAS  PubMed  CrossRef  Google Scholar 

  • Platara M, Ruiz A, Serrano R, Palomino A, Moreno F, Arino J (2006) The transcriptional response of the yeast Na(+)-ATPase ENA1 gene to alkaline stress involves three main signaling pathways. J Biol Chem 281(48):36632–36642. doi:M606483200 [pii]10.1074/jbc.M606483200

    CAS  PubMed  CrossRef  Google Scholar 

  • Poltermann S, Nguyen M, Gunther J, Wendland J, Hartl A, Kunkel W, Zipfel PF, Eck R (2005) The putative vacuolar ATPase subunit Vma7p of Candida albicans is involved in vacuole acidification, hyphal development and virulence. Microbiology 151(Pt 5):1645–1655

    CAS  PubMed  CrossRef  Google Scholar 

  • Portillo F (2000) Regulation of plasma membrane H(+)-ATPase in fungi and plants. Biochim Biophys Acta 1469(1):31–42

    CAS  PubMed  CrossRef  Google Scholar 

  • Portillo F, de Larrinoa IF, Serrano R (1989) Deletion analysis of yeast plasma membrane H+-ATPase and identification of a regulatory domain at the carboxyl-terminus. FEBS Lett 247(2):381–385

    CAS  PubMed  CrossRef  Google Scholar 

  • Portillo F, Eraso P, Serrano R (1991) Analysis of the regulatory domain of yeast plasma membrane H+-ATPase by directed mutagenesis and intragenic suppression. FEBS Lett 287(1–2):71–74

    CAS  PubMed  CrossRef  Google Scholar 

  • Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Arino J (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275(23):17249–17255

    CAS  PubMed  CrossRef  Google Scholar 

  • Poznanski J, Szczesny P, Ruszczynska K, Zielenkiewicz P, Paczek L (2013) Proteins contribute insignificantly to the intrinsic buffering capacity of yeast cytoplasm. Biochem Biophys Res Commun 430(2):741–744. doi:S0006-291X(12)02254-1 [pii]10.1016/j.bbrc.2012.11.079

    CAS  PubMed  CrossRef  Google Scholar 

  • Qi J, Forgac M (2007) Cellular environment is important in controlling V-ATPase dissociation and its dependence on activity. J Biol Chem 282(34):24743–24751. doi:M700663200 [pii]10.1074/jbc.M700663200

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Raines SM, Rane HS, Bernardo SM, Binder JL, Lee SA, Parra KJ (2013) Deletion of vacuolar proton-translocating ATPase V(o)a isoforms clarifies the role of vacuolar pH as a determinant of virulence-associated traits in Candida albicans. J Biol Chem 288(9):6190–6201. doi:M112.426197 [pii]10.1074/jbc.M112.426197

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rane HS, Bernardo SM, Raines SM, Binder JL, Parra KJ, Lee SA (2013) Candida albicans VMA3 is necessary for V-ATPase assembly and function and contributes to secretion and filamentation. Eukaryot Cell 12(10):1369–1382. doi:EC.00118-13 [pii]10.1128/EC.00118-13

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rubinstein JL, Walker JE, Henderson R (2003) Structure of the mitochondrial ATP synthase by electron cryomicroscopy. EMBO J 22(23):6182–6192. doi:10.1093/emboj/cdg608

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sautin YY, Lu M, Gaugler A, Zhang L, Gluck SL (2005) Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol Cell Biol 25(2):575–589

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Schuller C, Mamnun YM, Mollapour M, Krapf G, Schuster M, Bauer BE, Piper PW, Kuchler K (2004) Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell 15(2):706–720. doi:10.1091/mbc.E03-05-0322E03-05-0322 [pii]

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Seol JH, Shevchenko A, Deshaies RJ (2001) Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nat Cell Biol 3(4):384–391

    CAS  PubMed  CrossRef  Google Scholar 

  • Serra-Cardona A, Petrezselyova S, Canadell D, Ramos J, Arino J (2014) Coregulated expression of the Na+/phosphate Pho89 transporter and Ena1 Na+-ATPase allows their functional coupling under high-pH stress. Mol Cell Biol 34(24):4420–4435. doi:MCB.01089-14 [pii]10.1128/MCB.01089-14

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Serrano R (1983) In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett 156(1):11–14

    CAS  PubMed  CrossRef  Google Scholar 

  • Serrano R (1991) Transport across yeast vacuolar and plasma membranes. In: Broach JR, Pringle JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 523–585

    Google Scholar 

  • Serrano R, Kielland-Brandt MC, Fink GR (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature 319(6055):689–693

    CAS  PubMed  CrossRef  Google Scholar 

  • Serrano R, Bernal D, Simon E, Arino J (2004) Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment. J Biol Chem 279(19):19698–19704. Epub 12004 Mar 19601

    CAS  PubMed  CrossRef  Google Scholar 

  • Seto-Young D, Monk B, Mason AB, Perlin DS (1997) Exploring an antifungal target in the plasma membrane H(+)-ATPase of fungi. Biochim Biophys Acta 1326(2):249–256. doi:S0005-2736(97)00028-X [pii]

    CAS  PubMed  CrossRef  Google Scholar 

  • Silva P, Geros H (2009) Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 4(8):718–726

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Smardon AM, Kane PM (2014) Loss of vacuolar H+-ATPase activity in organelles signals ubiquitination and endocytosis of the yeast plasma membrane proton pump Pma1p. J Biol Chem 289(46):32316–32326. doi:M114.574442 [pii]10.1074/jbc.M114.574442

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Steinbach WJ, Reedy JL, Cramer RA Jr, Perfect JR, Heitman J (2007) Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 5(6):418–430. doi:nrmicro1680 [pii]10.1038/nrmicro1680

    CAS  PubMed  CrossRef  Google Scholar 

  • Stewart E, Hawser S, Gow NA (1989) Changes in internal and external pH accompanying growth of Candida albicans: studies of non-dimorphic variants. Arch Microbiol 151(2):149–153

    CAS  PubMed  CrossRef  Google Scholar 

  • Su Y, Zhou A, Al-Lamki RS, Karet FE (2003) The a-subunit of the V-type H+-ATPase interacts with phosphofructokinase-1 in humans. J Biol Chem 278(22):20013–20018. doi:10.1074/jbc.M210077200M210077200 [pii]

    CAS  PubMed  CrossRef  Google Scholar 

  • Sumner JP, Dow JA, Earley FG, Klein U, Jager D, Wieczorek H (1995) Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem 270(10):5649–5653

    CAS  PubMed  CrossRef  Google Scholar 

  • Sun-Wada G, Murata Y, Yamamoto A, Kanazawa H, Wada Y, Futai M (2000) Acidic endomembrane organelles are required for mouse postimplantation development. Dev Biol 228(2):315–325

    CAS  PubMed  CrossRef  Google Scholar 

  • Supply P, Wach A, Goffeau A (1993a) Enzymatic properties of the PMA2 plasma membrane-bound H(+)-ATPase of Saccharomyces cerevisiae. J Biol Chem 268(26):19753–19759

    CAS  PubMed  Google Scholar 

  • Supply P, Wach A, Thines-Sempoux D, Goffeau A (1993b) Proliferation of intracellular structures upon overexpression of the PMA2 ATPase in Saccharomyces cerevisiae. J Biol Chem 268(26):19744–19752

    CAS  PubMed  Google Scholar 

  • Svergun DI, Konrad S, Huss M, Koch MH, Wieczorek H, Altendorf K, Volkov VV, Gruber G (1998) Quaternary structure of V1 and F1 ATPase: significance of structural homologies and diversities. Biochemistry (Mosc) 37(51):17659–17663

    CAS  CrossRef  Google Scholar 

  • Sychrova H, Ramirez J, Pena A (1999) Involvement of Nha1 antiporter in regulation of intracellular pH in Saccharomyces cerevisiae. FEMS Microbiol Lett 171(2):167–172. doi:S0378-1097(98)00597-7 [pii]

    CAS  PubMed  CrossRef  Google Scholar 

  • Szopinska A, Degand H, Hochstenbach JF, Nader J, Morsomme P (2011) Rapid response of the yeast plasma membrane proteome to salt stress. Mol Cell Proteomics 10(11):M111.009589. doi:M111.009589 [pii]10.1074/mcp.M111.009589

  • Tabke K, Albertmelcher A, Vitavska O, Huss M, Schmitz HP, Wieczorek H (2014) Reversible disassembly of the yeast V-ATPase revisited under in vivo conditions. Biochem J 462(1):185–197. doi:BJ20131293 [pii]10.1042/BJ20131293

    CAS  PubMed  CrossRef  Google Scholar 

  • Tarsio M, Zheng H, Smardon AM, Martinez-Munoz GA, Kane PM (2011) Consequences of loss of Vph1 protein-containing vacuolar ATPases (V-ATPases) for overall cellular pH homeostasis. J Biol Chem 286(32):28089–28096. doi:M111.251363 [pii]10.1074/jbc.M111.251363

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Thayer NH, Leverich CK, Fitzgibbon MP, Nelson ZW, Henderson KA, Gafken PR, Hsu JJ, Gottschling DE (2014) Identification of long-lived proteins retained in cells undergoing repeated asymmetric divisions. Proc Natl Acad Sci U S A 111(39):14019–14026. doi:1416079111 [pii]10.1073/pnas.1416079111

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405(6787):647–655

    CAS  PubMed  CrossRef  Google Scholar 

  • Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I (2003) Activation of lysosomal function during dendritic cell maturation. Science 299(5611):1400–1403

    CAS  PubMed  CrossRef  Google Scholar 

  • Ullah A, Orij R, Brul S, Smits GJ (2012) Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Environ Microbiol 78(23):8377–8387. doi:AEM.02126-12 [pii]10.1128/AEM.02126-12

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. doi:324/5930/1029 [pii]10.1126/science.1160809

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Viladevall L, Serrano R, Ruiz A, Domenech G, Giraldo J, Barcelo A, Arino J (2004) Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae. J Biol Chem 279(42):43614–43624. Epub 42004 Aug 43606

    CAS  PubMed  CrossRef  Google Scholar 

  • Voss M, Vitavska O, Walz B, Wieczorek H, Baumann O (2007) Stimulus-induced phosphorylation of vacuolar H(+)-ATPase by protein kinase A. J Biol Chem 282(46):33735–33742. doi:M703368200 [pii]10.1074/jbc.M703368200

    CAS  PubMed  CrossRef  Google Scholar 

  • Voss M, Blenau W, Walz B, Baumann O (2009) V-ATPase deactivation in blowfly salivary glands is mediated by protein phosphatase 2C. Arch Insect Biochem Physiol 71(3):130–138. doi:10.1002/arch.20310

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini BL, Sabatini DM (2015) Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347(6218):188–194. doi:science.1257132 [pii]10.1126/science.1257132

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Davis RW et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901–906

    CAS  PubMed  CrossRef  Google Scholar 

  • Xu W, Smith FJ Jr, Subaran R, Mitchell AP (2004) Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Mol Biol Cell 15(12):5528–5537. doi:10.1091/mbc.E04-08-0666E04-08-0666 [pii]

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yenush L, Mulet JM, Arino J, Serrano R (2002) The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. EMBO J 21(5):920–929. doi:10.1093/emboj/21.5.920

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yenush L, Merchan S, Holmes J, Serrano R (2005) pH-Responsive, posttranslational regulation of the Trk1 potassium transporter by the type 1-related Ppz1 phosphatase. Mol Cell Biol 25(19):8683–8692

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yokoyama K, Nagata K, Imamura H, Ohkuma S, Yoshida M, Tamakoshi M (2003) Subunit arrangement in V-ATPase from Thermus thermophilus. J Biol Chem 278(43):42686–42691

    CAS  PubMed  CrossRef  Google Scholar 

  • Young BP, Shin JJ, Orij R, Chao JT, Li SC, Guan XL, Khong A, Jan E, Wenk MR, Prinz WA, Smits GJ, Loewen CJ (2010) Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism. Science 329(5995):1085–1088. doi:329/5995/1085 [pii]10.1126/science.1191026

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang J, Myers M, Forgac M (1992) Characterization of the V0 domain of the coated vesicle (H+)-ATPase. J Biol Chem 267(14):9773–9778

    CAS  PubMed  Google Scholar 

  • Zhang Z, Zheng Y, Mazon H, Milgrom E, Kitagawa N, Kish-Trier E, Heck AJ, Kane PM, Wilkens S (2008) Structure of the yeast vacuolar ATPase. J Biol Chem 283(51):35983–35995

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R (2010) Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog 6(6):e1000939. doi:10.1371/journal.ppat.1000939

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H-ATPase. Science 334(6056):678–683. doi:334/6056/678 [pii]10.1126/science.1207056

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Acknowledgments

Work in the Kane lab is funded by NIH R01 GM50322. Many thanks to the investigators who provided the decades of work leading to our current understanding of fungal pH transport and pH homeostasis and apologies to all whose work I was unable to cite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia M. Kane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kane, P.M. (2016). Proton Transport and pH Control in Fungi. In: Ramos, J., Sychrová, H., Kschischo, M. (eds) Yeast Membrane Transport. Advances in Experimental Medicine and Biology, vol 892. Springer, Cham. https://doi.org/10.1007/978-3-319-25304-6_3

Download citation