Skip to main content

Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 892)

Abstract

The wall of the yeast Saccharomyces cerevisiae is a shell of about 120 nm thick, made of two distinct layers, which surrounds the cell. The outer layer is constituted of highly glycosylated proteins and the inner layer is composed of β-glucan and chitin. These two layers are interconnected through covalent linkages leading to a supramolecular architecture that is characterized by physical and chemical properties including rigidity, porosity and biosorption. The later property results from the presence of highly negative charged phosphate and carboxylic groups of the cell wall proteins, allowing the cell wall to act as an efficient barrier to metals ions, toxins and organic compounds. An intimate connection between cell wall and plasma membrane is indicated by the fact that changes in membrane fluidity results in change in cell wall nanomechanical properties. Finally, cell wall contributes to transport processes through the use of dedicated cell wall mannoproteins, as it is the case for Fit proteins implicated in the siderophore-iron bound transport and the Tir/Dan proteins family in the uptake of sterols.

Keywords

  • Yeasts
  • Cell surface
  • Cell wall
  • Porosity
  • Biosorption
  • Membrane
  • Metal ions
  • Transport

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25304-6_2
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-25304-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2

References

  • Abramova N, Sertil O, Mehta S, Lowry CV (2001) Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae. J Bacteriol 183:2881–2887

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Aguilar-Uscanga B, Francois JM (2003) A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol 37:268–274

    CAS  CrossRef  PubMed  Google Scholar 

  • Alimardani P, Regnacq M, Moreau-Vauzelle C, Ferreira T, Rossignol T, Blondin B, Berges T (2004) SUT1-promoted sterol uptake involves the ABC transporter Aus1 and the mannoprotein Dan1 whose synergistic action is sufficient for this process. Biochem J 381:195–202

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Alkim C, Benbadis L, Yilmaz U, Cakar ZP, Francois JM (2013) Mechanisms other than activation of the iron regulon account for the hyper-resistance to cobalt of a Saccharomyces cerevisiae strain obtained by evolutionary engineering. Metallomics 5:1043–1060

    CAS  CrossRef  PubMed  Google Scholar 

  • Blackwell KJ, Singleton I, Tobin JM (1995) Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol 43:579–584

    CAS  CrossRef  PubMed  Google Scholar 

  • Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111

    CAS  CrossRef  PubMed  Google Scholar 

  • Brady D, Stoll AD, Starke L, Duncan JR (1994) Chemical and enzymatic extraction of heavy metal binding polymers from isolated cell walls of Saccharomyces cerevisiae. Biotechnol Bioeng 44:297–302

    CAS  CrossRef  PubMed  Google Scholar 

  • Cankorur-Cetinkaya A, Eraslan S, Kirdar B (2013) Transcriptional remodelling in response to changing copper levels in the Wilson and Menkes disease model of Saccharomyces cerevisiae. Mol Biosyst 9:2889–2908

    CAS  CrossRef  PubMed  Google Scholar 

  • Cappellaro C, Baldermann C, Rachel R, Tanner W (1994) Mating type-specific cell-cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a- and alpha-agglutinin. EMBO J 13:4737–4744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cappellaro C, Mrsa V, Tanner W (1998) New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J Bacteriol 180:5030–5037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson M, Botstein D (1982) Two differentially regulated mRNAs with different 5′ ends encode secreted with intracellular forms of yeast invertase. Cell 28:145–154

    CAS  CrossRef  PubMed  Google Scholar 

  • Cyert MS, Philpott CC (2013) Regulation of cation balance in Saccharomyces cerevisiae. Genetics 193:677–713

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Dague E, Gilbert Y, Verbelen C, Andre G, Alsteens D, Dufrene YF (2007) Towards a nanoscale view of fungal surfaces. Yeast 24:229–237

    CAS  CrossRef  PubMed  Google Scholar 

  • Dague E, Bitar R, Ranchon H, Durand F, Yken HM, Francois JM (2010) An atomic force microscopy analysis of yeast mutants defective in cell wall architecture. Yeast 27:673–684

    CAS  CrossRef  PubMed  Google Scholar 

  • Dallies N, Francois J, Paquet V (1998) A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae. Yeast 14:1297–1306

    CAS  CrossRef  PubMed  Google Scholar 

  • De Groot P, Ruiz C, Vazquez de Aldana CR, Duenas E, Cid VJ, Del Rey F, Rodriguez-Pena JM, Perez P, Andel A, Caubin J, Arroyo J, Garcia JC, Gil C, Molina M, Garcia LJ, Nombela C, Klis F (2001) A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genomics 2:124–142

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • de Groot PW, Kraneveld EA, Yin QY, Dekker HL, Gross U, Crielaard W, de Koster CG, Bader O, Klis FM, Weig M (2008) The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell 7:1951–1964

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • de Nobel JG, Barnett JA (1991) Passage of molecules through yeast cell walls: a brief essay-review. Yeast 7:313–323

    CrossRef  PubMed  Google Scholar 

  • de Nobel JG, Klis FM, Munnik T, Priem J, Van den Ende H (1990) An assay of relative cell wall porosity in Saccharomyces cerevisiae, Kluyveromyces lactis and Schizosaccharomyces pombe. Yeast 6:483–490

    CrossRef  PubMed  Google Scholar 

  • de Nobel JG, Klis FM, Ram A, Van UH, Priem J, Munnik T, Van den Ende H (1991) Cyclic variations in the permeability of the cell wall of Saccharomyces cerevisiae. Yeast 7:589–598

    CrossRef  PubMed  Google Scholar 

  • Del VV, Casagrande V, Bianchi MM, Piccinni E, Frontali L, Militti C, Fardeau V, Devaux F, Di SC, Presutti C, Negri R (2008) Role of Hog1 and Yaf9 in the transcriptional response of Saccharomyces cerevisiae to cesium chloride. Physiol Genomics 33:110–120

    CrossRef  Google Scholar 

  • Dufrene YF (2001) Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells. Micron 32:153–165

    CAS  CrossRef  PubMed  Google Scholar 

  • Dupont S, Rapoport A, Gervais P, Beney L (2014) Survival kit of Saccharomyces cerevisiae for anhydrobiosis. Appl Microbiol Biotechnol 98:8821–8834

    CAS  CrossRef  PubMed  Google Scholar 

  • Dupres V, Dufrene YF, Heinisch JJ (2010) Measuring cell wall thickness in living yeast cells using single molecular rulers. ACS Nano 4:5498–5504

    CAS  CrossRef  PubMed  Google Scholar 

  • Durand F, Dagkessamanskaia A, Martin-Yken H, Graille M, van Tilbeurgh H, Uversky VN, Francois JM (2008) Structure-function analysis of Knr4/Smi1, a newly member of intrinsically disordered proteins family, indispensable in the absence of a functional PKC1-SLT2 pathway in Saccharomyces cerevisiae. Yeast 25:563–576

    CAS  CrossRef  PubMed  Google Scholar 

  • Ecker M, Deutzmann R, Lehle L, Mrsa V, Tanner W (2006) Pir proteins of Saccharomyces cerevisiae are attached to beta-1,3-glucan by a new protein-carbohydrate linkage. J Biol Chem 281:11523–11529

    CAS  CrossRef  PubMed  Google Scholar 

  • Eddy AA, Barnett JA (2007) A history of research on yeasts 11. The study of solute transport: the first 90 years, simple and facilitated diffusion(1). Yeast 24:1023–1059

    CAS  CrossRef  PubMed  Google Scholar 

  • Fleet GH (1991) Cell Walls. In: Rose AH, Harrison JS (eds) The yeast, 2nd edn. Academic, London, pp 199–277

    Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    CAS  CrossRef  PubMed  Google Scholar 

  • Francois JM, Formosa C, Schiavone M, Pillet F, Martin-Yken H, Dague E (2013) Use of atomic force microscopy (AFM) to explore cell wall properties and response to stress in the yeast Saccharomyces cerevisiae. Curr Genet 59:187–196

    CAS  CrossRef  PubMed  Google Scholar 

  • Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81:33–82

    CAS  PubMed  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    CAS  CrossRef  PubMed  Google Scholar 

  • Hagen I, Ecker M, Lagorce A, Francois JM, Sestak S, Rachel R, Grossmann G, Hauser NC, Hoheisel JD, Tanner W, Strahl S (2004) Sed1p and Srl1p are required to compensate for cell wall instability in Saccharomyces cerevisiae mutants defective in multiple GPI-anchored mannoproteins. Mol Microbiol 52:1413–1425

    CAS  CrossRef  PubMed  Google Scholar 

  • Hazelwood LA, Walsh MC, Pronk JT, Daran JM (2010) Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to hop iso-alpha-acids. Appl Environ Microbiol 76:318–328

    CAS  CrossRef  PubMed  Google Scholar 

  • Hickman MJ, Spatt D, Winston F (2011) The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae. Genetics 188:325–338

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kamada Y, Jung US, Piotrowski J, Levin DE (1995) The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 9:1559–1571

    CAS  CrossRef  PubMed  Google Scholar 

  • Kapteyn JC, Van den Ende H, Klis FM (1999) The contribution of cell wall proteins to the organization of the yeast cell wall. Biochem Biophys Acta 1426:373–383

    CAS  CrossRef  PubMed  Google Scholar 

  • Kapteyn JC, ter Riet B, Vink E, Blad S, de Nobel H, van den EH, Klis FM (2001) Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39:469–479

    CAS  CrossRef  PubMed  Google Scholar 

  • Klis FM, Boorsma A, de Groot PW (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185–202

    CAS  CrossRef  PubMed  Google Scholar 

  • Kornitzer D (2009) Fungal mechanisms for host iron acquisition. Curr Opin Microbiol 12:377–383

    CAS  CrossRef  PubMed  Google Scholar 

  • Kucukgoze G, Alkim C, Yilmaz U, Kisakesen HI, Gunduz S, Akman S, Cakar ZP (2013) Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae. FEMS Yeast Res 13:731–746

    CAS  CrossRef  PubMed  Google Scholar 

  • Kuznets G, Vigonsky E, Weissman Z, Lalli D, Gildor T, Kauffman SJ, Turano P, Becker J, Lewinson O, Kornitzer D (2014) A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin. PLoS Pathog 10:e1004407

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kwast KE, Lai LC, Menda N, James DT III, Aref S, Burke PV (2002) Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response. J Bacteriol 184:250–265

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lai LC, Kosorukoff AL, Burke PV, Kwast KE (2005) Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media. Mol Cell Biol 25:4075–4091

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Levin DE (2011) Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145–1175

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ma M, Liu ZL (2010) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87:829–845

    CAS  CrossRef  PubMed  Google Scholar 

  • Magnelli P, Cipollo JF, Abeijon C (2002) A refined method for the determination of Saccharomyces cerevisiae cell wall composition and beta-1,6-glucan fine structure. Anal Biochem 301:136–150

    CAS  CrossRef  PubMed  Google Scholar 

  • Martin H, Dagkessamanskaia A, Satchanska G, Dallies N, Francois J (1999) KNR4, a suppressor of Saccharomyces cerevisiae cwh mutants, is involved in the transcriptional control of chitin synthase genes. Microbiology 145:249–258

    CAS  CrossRef  PubMed  Google Scholar 

  • Martin-Yken H, Dagkessamanskaia A, Talibi D, Francois J (2002) KNR4 is a member of the PKC1 signalling pathway and genetically interacts with BCK2, a gene involved in cell cycle progression in Saccharomyces cerevisiae. Curr Genet 41:323–332

    CAS  CrossRef  PubMed  Google Scholar 

  • Mnaimneh S, Davierwala AP, Haynes J, Moffat J, Peng WT, Zhang W, Yang X, Pootoolal J, Chua G, Lopez A, Trochesset M, Morse D, Krogan NJ, Hiley SL, Li Z, Morris Q, Grigull J, Mitsakakis N, Roberts CJ, Greenblatt JF, Boone C, Kaiser CA, Andrews BJ, Hughes TR (2004) Exploration of essential gene functions via titratable promoter alleles. Cell 118:31–44

    CAS  CrossRef  PubMed  Google Scholar 

  • Mrsa V, Seidl T, Gentzsch M, Tanner W (1997) Specific labelling of cell wall proteins by biotynilation. Identification of four covalently linked 0-mannosylated proteins of Saccharomyces cerevisiae. Yeast 13:1145–1154

    CAS  CrossRef  PubMed  Google Scholar 

  • Mrsa V, Ecker M, Strahl-Bolsinger S, Nimtz M, Lehle L, Tanner W (1999) Deletion of new covalently linked cell wall glycoproteins alters the electrophoretic mobility of phosphorylated wall components of Saccharomyces cerevisiae. J Bacteriol 181:3076–3086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller DJ, Dufrene YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21:461–469

    CrossRef  PubMed  Google Scholar 

  • Murata Y, Homma T, Kitagawa E, Momose Y, Sato MS, Odani M, Shimizu H, Hasegawa-Mizusawa M, Matsumoto R, Mizukami S, Fujita K, Parveen M, Komatsu Y, Iwahashi H (2006) Genome-wide expression analysis of yeast response during exposure to 4 degrees C. Extremophiles 10:117–128

    CAS  CrossRef  PubMed  Google Scholar 

  • Negishi T, Ohya Y (2010) The cell wall integrity checkpoint: coordination between cell wall synthesis and the cell cycle. Yeast 27:513–519

    CAS  CrossRef  PubMed  Google Scholar 

  • Nevitt T, Ohrvik H, Thiele DJ (2012) Charting the travels of copper in eukaryotes from yeast to mammals. Biochim Biophys Acta 1823:1580–1593

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Nguyen TH, Fleet GH, Rogers PL (1998) Composition of the cell walls of several yeast species. Appl Microbiol Biotechnol 50:206–212

    CAS  CrossRef  PubMed  Google Scholar 

  • Nishida N, Jing D, Kuroda K, Ueda M (2014) Activation of signaling pathways related to cell wall integrity and multidrug resistance by organic solvent in Saccharomyces cerevisiae. Curr Genet 60:149–162

    CAS  CrossRef  PubMed  Google Scholar 

  • Orlean P (2012) Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192:775–818

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Osumi M (1998) The ultrastructure of yeast: cell wall structure and formation. Micron 29:207–233

    CAS  CrossRef  PubMed  Google Scholar 

  • Pacheco PH, Gil RA, Cerutti SE, Smichowski P, Martinez LD (2011) Biosorption: a new rise for elemental solid phase extraction methods. Talanta 85:2290–2300

    CAS  CrossRef  PubMed  Google Scholar 

  • Parrou JL, Jules M, Beltran G, Francois J (2005) Acid trehalase in yeasts and filamentous fungi: Localization, regulation and physiological function. FEMS Yeast Res 5:503–511

    CAS  CrossRef  PubMed  Google Scholar 

  • Penacho V, Blondin B, Valero E, Gonzalez R (2012) Flocculation and transcriptional adaptation to fermentation conditions in a recombinant wine yeast strain defective for KNR4/SMI1. Biotechnol Prog 28:327–336

    CAS  CrossRef  PubMed  Google Scholar 

  • Pillet F, Lemonier S, Schiavone M, Formosa C, Martin-Yken H, Francois JM, Dague E (2014) Uncovering by atomic force microscopy of an original circular structure at the yeast cell surface in response to heat shock. BMC Biol 12:6

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Protchenko O, Ferea T, Rashford J, Tiedeman J, Brown PO, Botstein D, Philpott CC (2001) Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. J Biol Chem 276:49244–49250

    CAS  CrossRef  PubMed  Google Scholar 

  • Rachidi N, Martinez MJ, Barre P, Blondin B (2000) Saccharomyces cerevisiae PAU genes are induced by anaerobiosis. Mol Microbiol 35:1421–1430

    CAS  CrossRef  PubMed  Google Scholar 

  • Raychaudhuri S, Prinz WA (2006) Uptake and trafficking of exogenous sterols in Saccharomyces cerevisiae. Biochem Soc Trans 34:359–362

    CAS  CrossRef  PubMed  Google Scholar 

  • Rossignol T, Dulau L, Julien A, Blondin B (2003) Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20:1369–1385

    CAS  CrossRef  PubMed  Google Scholar 

  • Rustici G, van Bakel H, Lackner DH, Holstege FC, Wijmenga C, Bahler J, Brazma A (2007) Global transcriptional responses of fission and budding yeast to changes in copper and iron levels: a comparative study. Genome Biol 8:R73

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sahara T, Goda T, Ohgiya S (2002) Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. J Biol Chem 277:50015–50021

    CAS  CrossRef  PubMed  Google Scholar 

  • Schaber J, Adrover MA, Eriksson E, Pelet S, Petelenz-Kurdziel E, Klein D, Posas F, Goksor M, Peter M, Hohmann S, Klipp E (2010) Biophysical properties of Saccharomyces cerevisiae and their relationship with HOG pathway activation. Eur Biophys J 39:1547–1556

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY (2004) Cold adaptation in budding yeast. Mol Biol Cell 15:5492–5502

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    CAS  CrossRef  PubMed  Google Scholar 

  • Scherrer R, Louden L, Gerhardt P (1974) Porosity of the yeast cell wall and membrane. J Bacteriol 118:534–540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scherrer R, Berlin E, Gerhardt (1977) Density, porosity, and structure of dried cell walls isolated from Bacillus megaterium and Saccharomyces cerevisiae. J Bacteriol 129:1162–1164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiavone M, Vax A, Formosa C, Martin-Yken H, Dague E, Francois JM (2014) A combined chemical and enzymatic method to determine quantitatively the polysaccharide components in the cell wall of yeasts. FEMS Yeast Res 14:933–947

    CAS  CrossRef  PubMed  Google Scholar 

  • Smits GJ, Schenkman LR, Brul S, Pringle JR, Klis FM (2006) Role of cell cycle-regulated expression in the localized incorporation of cell wall proteins in yeast. Mol Biol Cell 17:3267–3280

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Soares EV, Soares HM (2013) Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry. Appl Microbiol Biotechnol 97:6667–6675

    CAS  CrossRef  PubMed  Google Scholar 

  • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA (2010) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109:13–24

    CAS  PubMed  Google Scholar 

  • Stenson JD, Hartley P, Wang C, Thomas CR (2011) Determining the mechanical properties of yeast cell walls. Biotechnol Prog 27:505–512

    CAS  CrossRef  PubMed  Google Scholar 

  • Sumner-Smith M, Bozzato RP, Skipper N, Davies RW, Hopper JE (1985) Analysis of the inducible MEL1 gene of Saccharomyces carlsbergensis and its secreted product, alpha-galactosidase (melibiase). Gene 36:333–340

    CAS  CrossRef  PubMed  Google Scholar 

  • Suzuki M, Igarashi R, Sekiya M, Utsugi T, Morishita S, Yukawa M, Ohya Y (2004) Dynactin is involved in a checkpoint to monitor cell wall synthesis in Saccharomyces cerevisiae. Nat Cell Biol 6:861–871

    CAS  CrossRef  PubMed  Google Scholar 

  • Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76:115–158

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Vieira RH, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24

    CAS  PubMed  Google Scholar 

  • Viswanathan M, Muthukumar G, Cong YS, Lenard J (1994) Seripauperins of Saccharomyces cerevisiae: a new multigene family encoding serine-poor relatives of serine-rich proteins. Gene 148:149–153

    CAS  CrossRef  PubMed  Google Scholar 

  • Volesky B (2007) Biosorption and me. Water Res 41:4017–4029

    CAS  CrossRef  PubMed  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    CAS  CrossRef  PubMed  Google Scholar 

  • Wilcox LJ, Balderes DA, Wharton B, Tinkelenberg AH, Rao G, Sturley SL (2002) Transcriptional profiling identifies two members of the ATP-binding cassette transporter superfamily required for sterol uptake in yeast. J Biol Chem 277:32466–32472

    CAS  CrossRef  PubMed  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    CAS  CrossRef  PubMed  Google Scholar 

  • Wysocki R, Tamas MJ (2010) How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 34:925–951

    CAS  CrossRef  PubMed  Google Scholar 

  • Yamaguchi M, Namiki Y, Okada H, Mori Y, Furukawa H, Wang J, Ohkusu M, Kawamoto S (2011) Structome of Saccharomyces cerevisiae determined by freeze-substitution and serial ultrathin-sectioning electron microscopy. J Electron Microsc (Tokyo) 60:321–335

    CrossRef  Google Scholar 

  • Yiannikouris A, Kettunen H, Apajalahti J, Pennala E, Moran CA (2013) Comparison of the sequestering properties of yeast cell wall extract and hydrated sodium calcium aluminosilicate in three in vitro models accounting for the animal physiological bioavailability of zearalenone. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30:1641–1650

    CAS  CrossRef  PubMed  Google Scholar 

  • Zhang M, Liang Y, Zhang X, Xu Y, Dai H, Xiao W (2008) Deletion of yeast CWP genes enhances cell permeability to genotoxic agents. Toxicol Sci 103:68–76

    CAS  CrossRef  PubMed  Google Scholar 

  • Zlotnik H, Fernandez MP, Bowers B, Cabib E (1984) Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J Bacteriol 159:1018–1026

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author is grateful to his close collaborators and to several colleagues for stimulating discussion and for providing unpublished data. Research in my laboratory has been supported by grants from EU (6thFP, Fungcellwall project), European Science Foundation (ESF, Fuminomics project), Agence Nationale de la Recherche (ANR contract NT05-2_42127 & R-11-JSV5-001-01), Region Midi Pyrénées (grant n°10051296) and industrial biotechnologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Marie Francois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Francois, J.M. (2016). Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts. In: Ramos, J., Sychrová, H., Kschischo, M. (eds) Yeast Membrane Transport. Advances in Experimental Medicine and Biology, vol 892. Springer, Cham. https://doi.org/10.1007/978-3-319-25304-6_2

Download citation