Skip to main content

Interactions Between Monovalent Cations and Nutrient Homeostasis

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 892)

Abstract

Maintenance of appropriate fluxes of monovalent cation is a requirement for growth and survival. In the budding yeast Saccharomyces cerevisiae an electrochemical gradient of H+ is fundamental for the uptake of diverse cations, such as K+, and of many other nutrients. In spite of early work suggesting that alterations in monovalent cation fluxes impact on the uptake and utilization of nutrients, such as phosphate anions, only recently this important aspect of the yeast physiology has been addressed and characterized in some detail. This chapter provides a historical background and summarizes the latest findings.

Keywords

  • Potassium homeostasis
  • Phosphate uptake
  • Ammonium assimilation
  • Saccharomyces cerevisiae

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25304-6_11
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-25304-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2

References

  • Alepuz PM, Cunningham KW, Estruch F (1997) Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Mol Microbiol 26:91–98

    CAS  PubMed  CrossRef  Google Scholar 

  • Ali R, Brett CL, Mukherjee S et al (2004) Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast. J Biol Chem 279:4498–4506

    CAS  PubMed  CrossRef  Google Scholar 

  • Alijo R, Ramos J (1993) Several routes of activation of the potassium uptake system of yeast. Biochim Biophys Acta 1179:224–228

    CAS  PubMed  CrossRef  Google Scholar 

  • Ambesi A, Miranda M, Petrov VV et al (2000) Biogenesis and function of the yeast plasma-membrane H(+)-ATPase. J Exp Biol 203:155–160

    CAS  PubMed  Google Scholar 

  • Arai H, Pink S, Forgac M (1989) Interaction of anions and ATP with the coated vesicle proton pump. Biochemistry 28:3075–3082

    CAS  PubMed  CrossRef  Google Scholar 

  • Auesukaree C, Homma T, Kaneko Y et al (2003) Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae. Biochem Biophys Res Commun 306:843–850

    CAS  PubMed  CrossRef  Google Scholar 

  • Banuelos MA, Sychrova H, Bleykasten-Grosshans C et al (1998) The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology 144(Pt 10):2749–2758

    CAS  PubMed  Google Scholar 

  • Barreto L, Canadell D, Petrezselyova S et al (2011) A genomewide screen for tolerance to cationic drugs reveals genes important for potassium homeostasis in Saccharomyces cerevisiae. Eukaryot Cell 10:1241–1250

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Barreto L, Canadell D, Valverde-Saubi D et al (2012) The short-term response of yeast to potassium starvation. Environ Microbiol 14:3026–3042

    CAS  PubMed  CrossRef  Google Scholar 

  • Benito B, Garciadeblas B, Rodriguez-Navarro A (2002) Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi. Microbiology 148:933–941

    CAS  PubMed  CrossRef  Google Scholar 

  • Bihler H, Slayman CL, Bertl A (1998) NSC1: a novel high-current inward rectifier for cations in the plasma membrane of Saccharomyces cerevisiae. FEBS Lett 432:59–64

    CAS  PubMed  CrossRef  Google Scholar 

  • Bihler H, Slayman CL, Bertl A (2002) Low-affinity potassium uptake by Saccharomyces cerevisiae is mediated by NSC1, a calcium-blocked non-specificity cation channel. Biochim Biophys Acta 1558:109–118

    CAS  PubMed  CrossRef  Google Scholar 

  • Boer VM, de Winde JH, Pronk JT et al (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278:3265–3274

    CAS  PubMed  CrossRef  Google Scholar 

  • Borst-Pauwels GW (1981) Ion transport in yeast. Biochim Biophys Acta 650:88–127

    CAS  PubMed  CrossRef  Google Scholar 

  • Brett CL, Tukaye DN, Mukherjee S et al (2005) The yeast endosomal Na+K+/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16:1396–1405

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bun-ya M, Nishimura M, Harashima S et al (1991) The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol 11:3229–3238

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bun-ya M, Shikata K, Nakade S et al (1996) Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr Genet 29:344–351

    CAS  PubMed  Google Scholar 

  • Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14:1–15

    CAS  PubMed  CrossRef  Google Scholar 

  • Buurman ET, Pennock J, Tempest DW et al (1989) Replacement of potassium ions by ammonium ions in different micro-organisms grown in potassium-limited chemostat culture. Arch Microbiol 152:58–63

    CAS  PubMed  CrossRef  Google Scholar 

  • Cagnac O, Leterrier M, Yeager M et al (2007) Identification and characterization of Vnx1p, a novel type of vacuolar monovalent cation/H+ antiporter of Saccharomyces cerevisiae. J Biol Chem 282:24284–24293

    CAS  PubMed  CrossRef  Google Scholar 

  • Campetelli AN, Previtali G, Arce CA et al (2005) Activation of the plasma membrane H-ATPase of Saccharomyces cerevisiae by glucose is mediated by dissociation of the H(+)-ATPase-acetylated tubulin complex. FEBS J 272:5742–5752

    CAS  PubMed  CrossRef  Google Scholar 

  • Canadell D, Gonzalez A, Casado C et al (2015) Functional interactions between potassium and phosphate homeostasis in Saccharomyces cerevisiae. Mol Microbiol 95(3):555–572. doi:10.1111/mmi.12886

    CAS  PubMed  CrossRef  Google Scholar 

  • Cox KH, Pinchak AB, Cooper TG (1999) Genome-wide transcriptional analysis in S. cerevisiae by mini-array membrane hybridization. Yeast 15:703–713

    CAS  PubMed  CrossRef  Google Scholar 

  • De Nobel JG, Barnett JA (1991) Passage of molecules through yeast cell walls: a brief essay-review. Yeast 7:313–323

    PubMed  CrossRef  Google Scholar 

  • Desai KM, Chang T, Wang H et al (2010) Oxidative stress and aging: is methylglyoxal the hidden enemy? Can J Physiol Pharmacol 88:273–284

    CAS  PubMed  CrossRef  Google Scholar 

  • Estrada E, Agostinis P, Vandenheede JR et al (1996) Phosphorylation of yeast plasma membrane H+-ATPase by casein kinase I. J Biol Chem 271:32064–32072

    CAS  PubMed  CrossRef  Google Scholar 

  • Gaber RF, Styles CA, Fink GR (1988) TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol 8:2848–2859

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Garciadeblas B, Rubio F, Quintero FJ et al (1993) Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol Gen Genet 236:363–368

    CAS  PubMed  CrossRef  Google Scholar 

  • Gauthier S, Coulpier F, Jourdren L et al (2008) Co-regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations. Mol Microbiol 68:1583–1594

    CAS  PubMed  CrossRef  Google Scholar 

  • Gelis S, Curto M, Valledor L et al (2012) Adaptation to potassium starvation of wild-type and K(+)-transport mutant (trk1,2) of Saccharomyces cerevisiae: 2-dimensional gel electrophoresis-based proteomic approach. MicrobiologyOpen 1:182–193

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ghillebert R, Swinnen E, De SP et al (2011) Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae. Biochem J 434:243–251

    CAS  PubMed  CrossRef  Google Scholar 

  • Gomez MJ, Luyten K, Ramos J (1996) The capacity to transport potassium influences sodium tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 135:157–160

    CAS  PubMed  CrossRef  Google Scholar 

  • Gonzalez A, Casado C, Petrezselyova S et al (2013) Molecular analysis of a conditional hal3 vhs3 yeast mutant links potassium homeostasis with flocculation and invasiveness. Fungal Genet Biol 53:1–9

    CAS  PubMed  CrossRef  Google Scholar 

  • Goodman J, Rothstein A (1957) The active transport of phosphate into the yeast cell. J Gen Physiol 40:915–923

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Goossens A, de la Fuente N, Forment J et al (2000) Regulation of yeast H(+)-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters. Mol Cell Biol 20:7654–7661

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Haro R, Garciadeblas B, Rodriguez-Navarro A (1991) A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett 291:189–191

    CAS  PubMed  CrossRef  Google Scholar 

  • Herrera R, Alvarez MC, Gelis S et al (2013) Subcellular potassium and sodium distribution in Saccharomyces cerevisiae wild type and vacuolar mutants. Biochem J 454:525–532

    CAS  PubMed  CrossRef  Google Scholar 

  • Hess DC, Lu W, Rabinowitz JD et al (2006) Ammonium toxicity and potassium limitation in yeast. PLoS Biol 4, e351

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Jazwinski SM (2013) The retrograde response: when mitochondrial quality control is not enough. Biochim Biophys Acta 1833:400–409

    CAS  PubMed  CrossRef  Google Scholar 

  • Kaffman A, Herskowitz I, Tjian R et al (1994) Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, pHO80–PHO85. Science 263:1153–1156

    CAS  PubMed  CrossRef  Google Scholar 

  • Kahm M, Navarrete C, Llopis-Torregrosa V et al (2012) Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling. PLoS Comput Biol 8, e1002548

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kane PM (2006) The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev 70:177–191

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kawasaki-Nishi S, Bowers K, Nishi T et al (2001) The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276:47411–47420

    CAS  PubMed  CrossRef  Google Scholar 

  • Ke R, Ingram PJ, Haynes K (2013) An integrative model of ion regulation in yeast. PLoS Comput Biol 9, e1002879

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ketchum KA, Joiner WJ, Sellers AJ et al (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376:690–695

    CAS  PubMed  CrossRef  Google Scholar 

  • Klionsky DJ, Herman PK, Emr SD (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54:266–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko CH, Gaber RF (1991) TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol 11:4266–4273

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ko CH, Buckley AM, Gaber RF (1990) TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae. Genetics 125:305–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko CH, Liang H, Gaber RF (1993) Roles of multiple glucose transporters in Saccharomyces cerevisiae. Mol Cell Biol 13:638–648

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kornberg A (1995) Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol 177:491–496

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kornberg A, Rao NN, Ault-Riché D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125

    CAS  PubMed  CrossRef  Google Scholar 

  • Lamb TM, Mitchell AP (2003) The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23:677–686

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lecchi S, Nelson CJ, Allen KE et al (2007) Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation. J Biol Chem 282:35471–35481

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee YS, Mulugu S, York JD et al (2007) Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science 316:109–112

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lee YS, Huang K, Quiocho FA et al (2008) Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate. Nat Chem Biol 4:25–32

    CAS  PubMed  CrossRef  Google Scholar 

  • Li SC, Kane PM (2009) The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793:650–663

    CAS  PubMed  CrossRef  Google Scholar 

  • Liang H, Gaber RF (1996) A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6. Mol Biol Cell 7:1953–1966

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Liu Z, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40:159–185

    CAS  PubMed  CrossRef  Google Scholar 

  • Madrid R, Gomez MJ, Ramos J et al (1998) Ectopic potassium uptake in trk1 trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential. J Biol Chem 273:14838–14844

    CAS  PubMed  CrossRef  Google Scholar 

  • Maeta K, Izawa S, Okazaki S et al (2004) Activity of the Yap1 transcription factor in Saccharomyces cerevisiae is modulated by methylglyoxal, a metabolite derived from glycolysis. Mol Cell Biol 24:8753–8764

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Magasanik B (2003) Ammonia assimilation by Saccharomyces cerevisiae. Eukaryot Cell 2:827–829

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Manolson MF, Wu B, Proteau D et al (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem 269:14064–14074

    CAS  PubMed  Google Scholar 

  • Maresova L, Sychrova H (2005) Physiological characterization of Saccharomyces cerevisiae kha1 deletion mutants. Mol Microbiol 55:588–600

    CAS  PubMed  CrossRef  Google Scholar 

  • Marini AM, Soussi-Boudekou S, Vissers S et al (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17:4282–4293

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Martinez P, Persson BL (1998) Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol Gen Genet 258:628–638

    CAS  PubMed  CrossRef  Google Scholar 

  • Martinez-Munoz GA, Kane P (2008) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283:20309–20319

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Miseta A, Kellermayer R, Aiello DP et al (1999) The vacuolar Ca2+/H+ exchanger Vcx1p/Hum1p tightly controls cytosolic Ca2+ levels in S. cerevisiae. FEBS Lett 451:132–136

    CAS  PubMed  CrossRef  Google Scholar 

  • Mo ML, Palsson BO, Herrgard MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3:37

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Mulet JM, Leube MP, Kron SJ et al (1999) A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter. Mol Cell Biol 19:3328–3337

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mulet JM, Alejandro S, Romero C et al (2004) The trehalose pathway and intracellular glucose phosphates as modulators of potassium transport and general cation homeostasis in yeast. Yeast 21:569–582

    CAS  PubMed  CrossRef  Google Scholar 

  • Navarrete C, Petrezselyova S, Barreto L et al (2010) Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Res 10:508–517

    CAS  PubMed  Google Scholar 

  • Ogawa N, Saitoh H, Miura K et al (1995) Structure and distribution of specific cis-elements for transcriptional regulation of PHO84 in Saccharomyces cerevisiae. Mol Gen Genet 249:406–416

    CAS  PubMed  CrossRef  Google Scholar 

  • Ozcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parra KJ, Chan CY, Chen J (2014) Saccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: one structure and multiple signals. Eukaryot Cell 13:706–714

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Parrou JL, Teste MA, Francois J (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143(Pt 6):1891–1900

    CAS  PubMed  CrossRef  Google Scholar 

  • Pattison-Granberg J, Persson BL (2000) Regulation of cation-coupled high-affinity phosphate uptake in the yeast Saccharomyces cerevisiae. J Bacteriol 182:5017–5019

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Perez-Valle J, Jenkins H, Merchan S et al (2007) Key role for intracellular K+ and protein kinases Sat4/Hal4 and Hal5 in the plasma membrane stabilization of yeast nutrient transporters. Mol Cell Biol 27:5725–5736

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Perez-Valle J, Rothe J, Primo C et al (2010) Hal4 and Hal5 protein kinases are required for general control of carbon and nitrogen uptake and metabolism. Eukaryot Cell 9:1881–1890

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Persson BL, Petersson J, Fristedt U et al (1999) Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochim Biophys Acta 1422:255–272

    CAS  PubMed  CrossRef  Google Scholar 

  • Persson BL, Lagerstedt JO, Pratt JR et al (2003) Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet 43:225–244

    CAS  PubMed  CrossRef  Google Scholar 

  • Petrezselyova S, Kinclova-Zimmermannova O, Sychrova H (2013) Vhc1, a novel transporter belonging to the family of electroneutral cation-Cl(-) cotransporters, participates in the regulation of cation content and morphology of Saccharomyces cerevisiae vacuoles. Biochim Biophys Acta 1828:623–631

    CAS  PubMed  CrossRef  Google Scholar 

  • Platara M, Ruiz A, Serrano R et al (2006) The transcriptional response of the yeast Na+-ATPase ENA1 gene to alkaline stress involves three main signaling pathways. J Biol Chem 281:36632–36642

    CAS  PubMed  CrossRef  Google Scholar 

  • Popova Y, Thayumanavan P, Lonati E et al (2010) Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proc Natl Acad Sci U S A 107:2890–2895

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Portillo F (2000) Regulation of plasma membrane H(+)-ATPase in fungi and plants. Biochim Biophys Acta 1469:31–42

    CAS  PubMed  CrossRef  Google Scholar 

  • Portillo F, Mulet JM, Serrano R (2005) A role for the non-phosphorylated form of yeast Snf1: tolerance to toxic cations and activation of potassium transport. FEBS Lett 579:512–516

    CAS  PubMed  CrossRef  Google Scholar 

  • Prior C, Potier S, Souciet JL et al (1996) Characterization of the NHA1 gene encoding a Na+/H+-antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett 387:89–93

    CAS  PubMed  CrossRef  Google Scholar 

  • Ramos J, Contreras P, Rodriguez-Navarro A (1985) A potassium transport mutant of Saccharomyces cerevisiae. Arch Microbiol 143:88–93

    Google Scholar 

  • Reisser C, Dick C, Kruglyak L et al (2013) Genetic basis of ammonium toxicity resistance in a sake strain of yeast: a Mendelian case. G3 (Bethesda) 3(4):733–740

    Google Scholar 

  • Rodriguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30

    CAS  PubMed  CrossRef  Google Scholar 

  • Rosenfeld L, Reddi AR, Leung E et al (2010) The effect of phosphate accumulation on metal ion homeostasis in Saccharomyces cerevisiae. J Biol Inorg Chem 15:1051–1062

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ruiz A, Arino J (2007) Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system. Eukaryot Cell 6:2175–2183

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Saito K, Ohtomo R, Kuga-Uetake Y et al (2005) Direct labeling of polyphosphate at the ultrastructural level in Saccharomyces cerevisiae by using the affinity of the polyphosphate binding domain of Escherichia coli exopolyphosphatase. Appl Environ Microbiol 71:5692–5701

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Schmidt G, Hecht TL, Thannhauser SJ (1949) The effect of potassium ions on the absorption of orthophosphate and the formation of metaphosphate by bakers’ yeast. J Biol Chem 178(2):733–742

    CAS  PubMed  Google Scholar 

  • Serra-Cardona A, Petrezselyova S, Canadell D et al (2014) Coregulated expression of the Na+/Phosphate Pho89 transporter and Ena1 Na+-ATPase allows their functional coupling under high-pH stress. Mol Cell Biol 34:4420–4435

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Serrano R (1983) In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Lett 156:11–14

    CAS  PubMed  CrossRef  Google Scholar 

  • Serrano R, Kielland-Brandt MC, Fink GR (1986) Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature 319:689–693

    CAS  PubMed  CrossRef  Google Scholar 

  • Serrano R, Ruiz A, Bernal D et al (2002) The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Mol Microbiol 46:1319–1333

    CAS  PubMed  CrossRef  Google Scholar 

  • Seto-Young D, Perlin DS (1991) Effect of membrane voltage on the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae. J Biol Chem 266:1383–1389

    CAS  PubMed  Google Scholar 

  • Stefan CP, Zhang N, Sokabe T et al (2013) Activation of an essential calcium signaling pathway in Saccharomyces cerevisiae by Kch1 and Kch2, putative low-affinity potassium transporters. Eukaryot Cell 12:204–214

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Tate JJ, Cooper TG (2003) Tor1/2 regulation of retrograde gene expression in Saccharomyces cerevisiae derives indirectly as a consequence of alterations in ammonia metabolism. J Biol Chem 278:36924–36933

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • ter Schure EG, Sillje HH, Verkleij AJ et al (1995) The concentration of ammonia regulates nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol 177:6672–6675

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • ter Schure EG, van Riel NA, Verrips CT (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83

    PubMed  CrossRef  Google Scholar 

  • Thomas MR, O’Shea EK (2005) An intracellular phosphate buffer filters transient fluctuations in extracellular phosphate levels. Proc Natl Acad Sci U S A 102:9565–9570

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Toh-e A, Tanaka K, Uesono Y et al (1988) PHO85, a negative regulator of the PHO system, is a homolog of the protein kinase gene, CDC28, of Saccharomyces cerevisiae. Mol Gen Genet 214:162–164

    CAS  PubMed  CrossRef  Google Scholar 

  • Tropia MJ, Cardoso AS, Tisi R et al (2006) Calcium signaling and sugar-induced activation of plasma membrane H(+)-ATPase in Saccharomyces cerevisiae cells. Biochem Biophys Res Commun 343:1234–1243

    CAS  PubMed  CrossRef  Google Scholar 

  • Urech K, Durr M, Boller T et al (1978) Localization of polyphosphate in vacuoles of Saccharomyces cerevisiae. Arch Microbiol 116:275–278

    CAS  PubMed  CrossRef  Google Scholar 

  • Vargas RC, Garcia-Salcedo R, Tenreiro S et al (2007) Saccharomyces cerevisiae multidrug resistance transporter Qdr2 is implicated in potassium uptake, providing a physiological advantage to quinidine-stressed cells. Eukaryot Cell 6:134–142

    CAS  PubMed  CrossRef  Google Scholar 

  • Viladevall L, Serrano R, Ruiz A et al (2004) Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae. J Biol Chem 279:43614–43624

    CAS  PubMed  CrossRef  Google Scholar 

  • Wright MB, Ramos J, Gomez MJ et al (1997) Potassium transport by amino acid permeases in Saccharomyces cerevisiae. J Biol Chem 272:13647–13652

    CAS  PubMed  CrossRef  Google Scholar 

  • Wykoff DD, O’Shea EK (2001) Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics 159:1491–1499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman S, Lippman SI, Zhao X et al (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81

    CAS  PubMed  CrossRef  Google Scholar 

  • Zvyagilskaya RA, Lundh F, Samyn D et al (2008) Characterization of the Pho89 phosphate transporter by functional hyperexpression in Saccharomyces cerevisiae. FEMS Yeast Res 8:685–696

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgments

Work in the laboratory of the authors was supported by grants BFU2011-30197-C3-01, BFU2014-54591-C2-1-P, and EUI2009-04147 (SysMo2) to J.A. (Ministry of Science and Innovation, Spain, and Fondo Europeo de Desarrollo Regional [FEDER]). J.A. is recipient of an Ajut 2014SGR-4 and was awarded an Institució Catalana de Recerca i Estudis Avançats (ICREA) Academia 2009 Award (Generalitat de Catalunya). D.C. was recipient of a predoctoral fellowship from the Spanish Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Ariño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Canadell, D., Ariño, J. (2016). Interactions Between Monovalent Cations and Nutrient Homeostasis. In: Ramos, J., Sychrová, H., Kschischo, M. (eds) Yeast Membrane Transport. Advances in Experimental Medicine and Biology, vol 892. Springer, Cham. https://doi.org/10.1007/978-3-319-25304-6_11

Download citation