Skip to main content

Inorganic Phosphate and Sulfate Transport in S. cerevisiae

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 892)

Abstract

Inorganic ions such as phosphate and sulfate are essential macronutrients required for a broad spectrum of cellular functions and their regulation. In a constantly fluctuating environment microorganisms have for their survival developed specific nutrient sensing and transport systems ensuring that the cellular nutrient needs are met. This chapter focuses on the S. cerevisiae plasma membrane localized transporters, of which some are strongly induced under conditions of nutrient scarcity and facilitate the active uptake of inorganic phosphate and sulfate. Recent advances in studying the properties of the high-affinity phosphate and sulfate transporters by means of site-directed mutagenesis have provided further insight into the molecular mechanisms contributing to substrate selectivity and transporter functionality of this important class of membrane transporters.

Keywords

  • Phosphate
  • Sulfate
  • Transport
  • Regulation
  • S. cerevisiae

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25304-6_10
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-25304-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5

References

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    CAS  CrossRef  PubMed  Google Scholar 

  • Andersson MR, Samyn DR, Persson BL (2012) Mutational analysis of conserved glutamic acids of Pho89, a Saccharomyces cerevisiae high-affinity inorganic phosphate:Na+ symporter. Biologia 67(6):1056–1061

    CAS  CrossRef  Google Scholar 

  • Auesukaree C, Homma T, Tochio H, Shirakawa M, Kaneko Y, Harashima S (2004) Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae. J Biol Chem 279:17289–17294

    CAS  CrossRef  PubMed  Google Scholar 

  • Barabote RD, Tamang DG, Abeywardena SN, Fallah NS, Fu JY, Lio JK, Mirhosseini P, Pezeshk R, Podell S, Salampessy ML, Thever MD, Saier MH Jr (2006) Extra domains in secondary transport carriers and channel proteins. Biochim Biophys Acta 1758:1557–1579

    CAS  CrossRef  PubMed  Google Scholar 

  • Berhe A, Zvyagilskaya R, Lagersted JO, Pratt JR, Persson BL (2001) Properties of the cysteine-less Pho84 phosphate transporter of Saccharomyces cerevisiae. Biochem Biophys Res Comm 287:837–842

    CAS  CrossRef  PubMed  Google Scholar 

  • Boer VM, de Winde JH, Pronk JT, Piper MD (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278:3265–3274

    CAS  CrossRef  PubMed  Google Scholar 

  • Borst-Pauwels GWFH (1993) Mutual interaction of ion uptake and membrane-potential. Biochim Biophys Acta 1145:15–24

    CAS  CrossRef  PubMed  Google Scholar 

  • Bottger P, Pedersen L (2002) Two highly conserved glutamate residues critical for type III sodium-dependent phosphate transport revealed by uncoupling transport function from retroviral receptor function. J Biol Chem 277:42741–42747

    CAS  CrossRef  PubMed  Google Scholar 

  • Bottger P, Pedersen L (2005) Evolutionary and experimental analyses of inorganic phosphate transporter PiT family reveals two related sigNature sequences harboring highly conserved aspartic acids critical for sodium-dependent phosphate transport function of human PiT2. Febs J 272:3060–3074

    CAS  CrossRef  PubMed  Google Scholar 

  • Breton A, Surdin-Kerjan Y (1977) Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J Bacteriol 132:224–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bun-ya M, Nishimura M, Harashima S, Oshima Y (1991) The Pho84 gene of Saccharomyces cerevisiae encodes an inorganic-phosphate transporter. Mol Cell Biol 11:3229–3238

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bun-ya M, Shikata K, Nakade S, Yompakdee C, Harashima S, Oshima Y (1996) Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr Genetics 29:344–351

    CAS  Google Scholar 

  • Cain NE, Kaiser CA (2011) Transport activity-dependent intracellular sorting of the yeast general amino acid permease. Mol Biol Cell 22:1919–1929

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y (1997) Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetic 145:627–635

    CAS  Google Scholar 

  • Collins JF, Bai LQ, Ghishan FK (2004) The SLC20 family of proteins: dual functions as sodium-phosphate cotransporters and viral receptors. Pflugers Archiv-European J Physiol 447:647–652

    CAS  CrossRef  Google Scholar 

  • Ellinger RH (1972) Phosphates in food processing. In: Furia TE (ed) CRC Handbook of food additives. CRC Press, Cleveland

    Google Scholar 

  • Ghillebert RSE, De Snijder P, Smets B, Winderickx J (2011) Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae. Biochem J 434:243–251

    CAS  CrossRef  PubMed  Google Scholar 

  • Giots F, Donaton MCV, Thevelein JM (2003) Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 47:1163–1181

    CAS  CrossRef  PubMed  Google Scholar 

  • Haguenauer-Tsapis R, Andre B (2004) Membrane trafficking of yeast transporters: mechanisms and physiological control of downregulation. Topics in Current Genetics (2004) ed Berlin-Heidelberg: Springer

    Google Scholar 

  • Holsbeeks I, Lagatie O, Van Nuland A, Van de Velde S, Thevelein JM (2004) The eukaryotic plasma membrane as a nutrient-sensing device. Trends Biochem Sci 29:556–564

    CAS  CrossRef  PubMed  Google Scholar 

  • Huang YF, Lemieux MJ, Song JM, Aue M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620

    CAS  CrossRef  PubMed  Google Scholar 

  • Huang K, Ferrin-O’Connell I, Zhang W, Leonard GA, O’Shea EK, Quiocho FA (2007) Structure of the Pho85-Pho80 CDK-cyclin complex of the phosphate-responsive signal transduction pathway. Mol Cell 28:614–623

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hürlimann BC, Stadler-Waibel M, Werner TP, Freimoser FM (2007) Pho91 is a vacuolar phosphate phosphate and polyphosphate Saccharomyces cerevisiae. Mol Biol Cell 18:4438–4445

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hürlimann HC, Pinson B, Stadler-Waibel M, Zeeman SC, Freimoser FM (2009) The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity. Embo Rep 10:1003–1008

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Jennings ML, Cui J (2012) Inactivation of Saccharomyces cerevisiae sulfate transporter Sul2p: use it and lose it. Biophys J 102:768–776

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Jensen LT, Ajua-Alemanji M, Culotta VC (2003) The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J Biol Chem 278:42036–42040

    CAS  CrossRef  PubMed  Google Scholar 

  • Johnston M, Carlson M (1992) Regulation of carbon and phosphate utilization. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces: gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 193–281

    Google Scholar 

  • Kaback HR, Sahin-Tóth M, Weinglass AB (2001) The kamikaze approach to membrane transport. Nat Rev Mol Cell Biol 2:610–620

    CAS  CrossRef  PubMed  Google Scholar 

  • Kaffman A, Rank NM, O’Neill EM, Huang LS, O’Shea EK (1998) The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396:482–486

    CAS  CrossRef  PubMed  Google Scholar 

  • Kaneko Y, Hayashi N, Toh-e A, Banno I, Oshima Y (1987) Structural characteristics of the Pho8 gene encoding repressible alkaline-phosphatase in Saccharomyces-cerevisiae. Gene 58:137–148

    CAS  CrossRef  PubMed  Google Scholar 

  • Kang HJ, Jeong SJ, Kim KN, Baek IJ, Chang M, Kang CM, Park YS, Yun CW (2014) A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism by decreasing the mRNA stability of PHO4 in Saccharomyces cerevisiae. Biochem J 457:391–400

    CAS  CrossRef  PubMed  Google Scholar 

  • Kankipati HN, Rubio-Texeira M, Castermans D, Diallinas G, Thevelein JM (2015) Sul1and Sul2 sulfate transceptors signal to protein kinase A upon exit of sulfur starvation. J Biol Chem. pii: jbc.M114.629022. [Epub ahead of print]

    Google Scholar 

  • Kelm KB, Huyer G, Huang JC, Michaelis S (2004) The internalization of yeast Ste6p follows an ordered series of events involving phosphorylation, ubiquitination, recognition and endocytosis. Traffic 5:165–180

    CAS  CrossRef  PubMed  Google Scholar 

  • Kölling R, Hollenberg CP (1994) The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J 13:3261–3271

    PubMed  PubMed Central  Google Scholar 

  • Komeili A, O’Shea EK (1999) Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284:977–980

    CAS  CrossRef  PubMed  Google Scholar 

  • Lagerstedt JO, Voss JC, Wieslander A, Persson BL (2004) Structural modeling of dual-affinity purified Pho84 phosphate transporter. Febs Lett 578:262–268

    CAS  CrossRef  PubMed  Google Scholar 

  • Lau WTW, Howson RW, Malkus P, Schekman R, O’Shea EK (2000) Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p. PNAS 97:1107–1112

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lauwers E, Erpapazoglou Z, Haguenauer-Tsapis R, Andre B (2010) The ubiquitin code of yeast permease trafficking. Trends in Cell Biol 20:196–204

    CAS  CrossRef  Google Scholar 

  • Lazard M, Blanquet S, Fisicaro P, Labarraque G, Plateau P (2010) Uptake of selenite by Saccharomyces cerevisiae involves the high and low affinity orthophosphate transporters. J Biol Chem 285:32029–32037

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lee YS, Mulugu S, York JD, O’Shea EK (2007) Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science 316:109–112

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lee PS, Greenwell PW, Dominska M, Gawel M, Hamilton M, Petes TD (2009) A fine-structure map of spontaneous mitotic crossovers in the yeast Saccharomyces cerevisiae. PLoS Gen 5, e1000410

    CrossRef  Google Scholar 

  • Lee MV, Topper SE, Hubler SL, Hose J, Wenger CD, Coon JJ, Gasch AP (2011) A dynamic model of proteome changes reveals new roles for transcript alteration in yeast. Mol Syst Biol 7:514

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lenburg ME, OShea EK (1996) Signaling phosphate starvation. Trends Biochem Sci 21:383–387

    CAS  CrossRef  PubMed  Google Scholar 

  • Lundh F, Mouillon JM, Samyn D, Stadler K, Popova Y, Lagerstedt JO, Thevelein JM, Persson BL (2009) Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter. Biochem 48:4497–4505

    CAS  CrossRef  Google Scholar 

  • Marchal C, Haguenauer-Tsapis R, Urban-Grimal D (1998) A PEST-like sequence mediates phosphorylation and efficient ubiquitination of yeast uracil permease. Mol Cell Biol 18:314–321

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Martinez P, Persson BL (1998) Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol General Gen 258:628–638

    CAS  CrossRef  Google Scholar 

  • Maw GA (1963) The uptake of inorganic sulfate by a brewer’s yeast. Folia Microbiol (Praha) 40:325–332

    CAS  CrossRef  Google Scholar 

  • McCready RG, Din GA (1974) Active sulfate transport in Saccharomyces cerevisiae. FEBS Lett 38:361–363

    CAS  CrossRef  PubMed  Google Scholar 

  • Mouillon JM, Persson BL (2005) Inhibition of the protein kinase A alters the degradation of the high-affinity phosphate transporter Pho84 in Saccharomyces cerevisiae. Curr Gen 48:226–234

    CAS  CrossRef  Google Scholar 

  • Mouillon JM, Persson BL (2006) New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae. Fems Yeast Res 6:171–176

    CAS  CrossRef  PubMed  Google Scholar 

  • Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 447:710–721

    CAS  CrossRef  PubMed  Google Scholar 

  • Ogawa N, Noguchi KI, Sawai H, Yamashita Y, Yompakdee C, Oshima Y (1995) Functional domains of Pho81p, an Inhibitor of Pho85p Protein-Kinase, in the transduction pathway of P-I signals in Saccharomyces cerevisiae. Mol Cell Biol 15:997–1004

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • ONeill EM, Kaffman A, Jolly ER, OShea EK (1996) Regulation of PHO4 nuclear localization by the PHO80-PHO85 cyclin-CDK complex. Science 271:209–212

    CAS  CrossRef  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pattison-Granberg J, Persson BL (2000) Regulation of cation-coupled high-affinity phosphate uptake in the yeast Saccharomyces cerevisiae. J Bact 182:5017–5019

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, Schlessinger A, Bonomi M, Harries W, Sali A, Johri AK, Stroud RM (2013) Crystal structure of a eukaryotic phosphate transporter. Nature 496:533–536

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Persson BL, Petersson J, Fristedt U, Weinander R, Berhe A, Pattison J (1999) Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochim Biophys Acta Rev Biomembr 1422:255–272

    CAS  CrossRef  Google Scholar 

  • Persson BL, Lagerstedt JO, Pratt JR, Pattison-Granberg J, Lundh K, Shokrollahzadeh S, Lundh F (2003) Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Gen 43:225–244

    CAS  CrossRef  Google Scholar 

  • Popova Y, Thayumanavan P, Lonati E, Agrochao M, Thevelein JM (2010) Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. PNAS 107:2890–2895

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Pratt JR, Mouillon JM, Lagerstedt JO, Pattison-Granberg J, Lundh KI, Persson BL (2004) Effects of methylphosphonate, a phosphate analogue, on the expression and degradation of the high-affinity phosphate transporter Pho84, in Saccharomyces cerevisiae. Biochemistry 43:14444–14453

    CAS  CrossRef  PubMed  Google Scholar 

  • Roomans GM, Kuypers GA, Theuvenet AP, Borst-Pauwels GW (1979) Kinetics of sulfate uptake by yeast. Biochim Biophys Acta 551:197–206

    CAS  CrossRef  PubMed  Google Scholar 

  • Saier MH, Beatty JT, Goffeau A, Harley KT, Heijne WHM, Huang SH, Jack DL, Jahn PS, Lew K, Liu J, Pao SS, Paulsen IT, Tseng TT, Virk PS (2000) The major facilitator superfamily. J Mol Microbiol Biotech 2:255–279

    CAS  Google Scholar 

  • Salaün C, Rodrigues P, Heard JM (2001) Transmembrane topology of PiT-2, a phosphate transporter-retrovirus receptor. J Virol 75:5584–5592

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Samyn DR, Ruiz-Pávon L, Andersson MR, Popova Y, Thevelein JM, Persson BL (2012) Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate:H(+) transceptor and its effect on signalling to the PKA and PHO pathways. Biochem J 445:413–422

    CAS  CrossRef  PubMed  Google Scholar 

  • Sengottaiyan P, Ruiz-Pavón L, Persson BL (2013a) Functional expression, purification and reconstitution of the recombinant phosphate transporter Pho89 of Saccharomyces cerevisiae. FEBS J 280:965–975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sengottaiyan P, Petrlova J, Lagerstedt JO, Ruiz-Pavon L, Budamagunta MS, Voss JC, Persson BL (2013b) Characterization of the biochemical and biophysical properties of the Saccharomyces cerevisiae phosphate transporter Pho89. Biochem Biophys Res Commun 436:551–556

    CAS  CrossRef  PubMed  Google Scholar 

  • Serrano R, Ruiz A, Bernal D, Chambers JR, Arino J (2002) The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signaling. Mol Microbiol 46:1319–1333

    CAS  CrossRef  PubMed  Google Scholar 

  • Springer M, Wykoff DD, Miller N, O’Shea EK (2003) Partially phosphorylated Pho4 activates transcription of a subset of phosphate-responsive genes. Plos Biol 1:261–270

    CAS  CrossRef  Google Scholar 

  • Tamai Y, Toh-e A, Oshima Y (1985) Regulation of inorganic-phosphate transport-systems in Saccharomyces cerevisiae. J Bacteriol 164:964–968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thevelein JM, Voordeckers K (2009) Functioning and evolutionary significance of nutrient transceptors. Mol Biol Evol 26:2407–2414

    CAS  CrossRef  PubMed  Google Scholar 

  • Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918

    CAS  CrossRef  PubMed  Google Scholar 

  • Toh-e A, Ueda Y, Kakimoto SI, Oshima Y (1973) Isolation and characterization of acid-phosphatase mutants in Saccharomyces cerevisiae. J Bacteriol 113:727–738

    CAS  PubMed Central  Google Scholar 

  • Toh-e A, Tanaka K, Uesono Y, Wickner RB (1988) Pho85, a negative regulator of the Pho system, is a homolog of the protein-kinase gene, Cdc28, of Saccharomyces cerevisiae. Mol Geneal Gen 214:162–164

    CAS  CrossRef  Google Scholar 

  • Vardi N, Levy S, Gurvich Y, Polacheck T, Carmi M, Jaitin D, Amit I, Barkai N (2014) Sequential feedback induction stabilizes the phosphate starvation response in budding yeast. Cell Rep 9:1122–1134

    CAS  CrossRef  PubMed  Google Scholar 

  • Wykoff DD, O’Shea EK (2001) Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics 159:1491–1499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wykoff DD, Rizvi AH, Raser JM, Margolin B, O’Shea EK (2007) Positive feedback regulates switching of phosphate transporters in S cerevisiae. Mol Cell 27:1005–1013

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zvyagilskaya RA, Lundh F, Samyn D, Pattison-Granberg J, Mouillon JM, Popova Y, Thevelein JM, Persson BL (2008) Characterization of the Pho89 phosphate transporter by functional hyperexpression in Saccharomyces cerevisiae. FEMS Yeast Res 8:685–696

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Samyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Samyn, D.R., Persson, B.L. (2016). Inorganic Phosphate and Sulfate Transport in S. cerevisiae . In: Ramos, J., Sychrová, H., Kschischo, M. (eds) Yeast Membrane Transport. Advances in Experimental Medicine and Biology, vol 892. Springer, Cham. https://doi.org/10.1007/978-3-319-25304-6_10

Download citation