Skip to main content

Topological Defects in Nanostructures—Chiral Domain Walls and Skyrmions

  • Chapter
  • First Online:
Topological Structures in Ferroic Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 228))

Abstract

In this chapter, spin structures with particular topologies in confined geometries are presented. Domain walls in nanowires exhibit a spin structure that depends on the material and geometry while in discs Skyrmions can be stabilized by different competing interactions. The topologies of these spin structures can be characterized by a Skyrmion or Winding number that governs the dynamics and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Aharoni, Introduction to the Theory of Ferromagnetism (Clarendon Press, Oxford, 1996)

    Google Scholar 

  2. H. Kronmüller, M. Fähnle, Micromagnetism and the Microstructure of Ferromagnetic Solids (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  3. S. Chikazumi, Physics of Ferromagnetism, 2nd edn. (Clarendon Press, Oxford, 1997)

    Google Scholar 

  4. M. Kläui, C.A.F. Vaz, in Handbook of Magnetism and Advanced Magnetic Materials, vol. 2, ed. by H. Kronmüller, S.S.P. Parkin (John Wiley and Sons, Chichester, 2007)

    Google Scholar 

  5. A.A. Belavin, A.M. Polyakov, JETP Lett. 22, 245 (1975)

    ADS  Google Scholar 

  6. O. Tchernyshyov, G.-W. Chern, Phys. Rev. Lett. 95, 197204 (2005)

    Article  ADS  Google Scholar 

  7. R.P. Cowburn et al., Phys. Rev. Lett. 83, 1042 (1999)

    Article  ADS  Google Scholar 

  8. T. Shinjo et al., Science 289, 930 (2000)

    Article  ADS  Google Scholar 

  9. A. Hubert, R. Schäfer, Magnetic Domains-The Analysis of Magnetic Microstructures (Springer, Berlin, 1998)

    Google Scholar 

  10. L.D. Landau, E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935)

    MATH  Google Scholar 

  11. L. Néel, C.R. Hebd, Séances Acad. Sci. 249, 533 (1955)

    Google Scholar 

  12. F. Bloch, Z. Phys. A 74, 295 (1932)

    Google Scholar 

  13. M. Kläui, J. Phys.: Condens. Matter 20, 313001 (2008)

    ADS  Google Scholar 

  14. A. Fert, Mater. Sci. Forum 50–60, 439 (1990)

    Article  Google Scholar 

  15. K.-S. Ryu, L. Thomas, S.-H. Yang, S.S.P. Parkin, Nat. Nanotech. 8, 527 (2013)

    Article  ADS  Google Scholar 

  16. S. Emori et al., Nat. Mater. 12, 611 (2013)

    Article  ADS  Google Scholar 

  17. S.S.P. Parkin et al., Science 320, 190 (2008)

    Article  ADS  Google Scholar 

  18. J.-S. Kim et al., Nat. Comm. 5, 3429 (2014)

    ADS  Google Scholar 

  19. D.A. Allwood et al., Science 309, 1688 (2005)

    Article  ADS  Google Scholar 

  20. M. Diegel et al., IEEE Trans. Magn. 45, 3792 (2009)

    Article  ADS  Google Scholar 

  21. O. Boulle et al., Phys. Rev. Lett. 101, 216601 (2008)

    Article  ADS  Google Scholar 

  22. J. Heinen et al., J. Phys. Cond. Matter 24, 024220 (2012)

    Article  ADS  Google Scholar 

  23. O. Boulle, Mater. Sci. Eng. R 72, 159 (2011)

    Article  Google Scholar 

  24. I.M. Miron et al., Nat. Mater. 9, 230 (2010)

    ADS  Google Scholar 

  25. P. Gambardella et al., Phil. Trans. R. Soc. A 369, 3175 (2011)

    Article  ADS  Google Scholar 

  26. A. Manchon, arXiv:1204.4869v1 (2012)

  27. A. Thiaville et al., Europhys. Lett. 100, 57002 (2012)

    Article  ADS  Google Scholar 

  28. S. Emori et al., Phys. Rev. B 90, 184427 (2014)

    Article  ADS  Google Scholar 

  29. O. Boulle et al., Phys. Rev. Lett. 111, 217203 (2013)

    Article  ADS  Google Scholar 

  30. L. Liu et al., Science 336, 555 (2012)

    Article  ADS  Google Scholar 

  31. R. Lo Conte et al., Appl. Phys. Lett. 105, 122404 (2014)

    Google Scholar 

  32. R. Lo Conte et al., Phys. Rev. B 91, 014433 (2015)

    Google Scholar 

  33. B. Van Waeyenberge et al., Nature 444, 461–464 (2006)

    Article  ADS  Google Scholar 

  34. J. Shibata et al., Phys. Rev. B 73, 020403 (2006)

    Article  ADS  Google Scholar 

  35. M. Bolte et al., Phys. Rev. Lett. 100, 176601 (2008)

    Article  ADS  Google Scholar 

  36. B. Krüger et al., Phys. Rev. B 76, 224426 (2007)

    Article  ADS  Google Scholar 

  37. C. Moutafis et al., Phys. Rev. B 79, 224429 (2009)

    Article  ADS  Google Scholar 

  38. A. Thiele, Phys. Rev. Lett. 30, 230–233 (1973)

    Article  ADS  Google Scholar 

  39. A. Thiele, J. Appl. Phys. 45, 377 (1974)

    Article  ADS  Google Scholar 

  40. Y.B. Bazaliy et al., Phys. Rev. B 57, R3213 (1998)

    Article  ADS  Google Scholar 

  41. S. Zhang, Z. Li, Phys. Rev. Lett. 93, 127204 (2004)

    Google Scholar 

  42. K.-S. Lee et al., Appl. Phys. Lett. 92, 192513 (2008)

    Article  ADS  Google Scholar 

  43. I. Makhfudz et al., Phys. Rev. Lett. 109, 217201 (2012)

    Article  ADS  Google Scholar 

  44. S. Eisebitt et al., Nature 432, 885 (2004)

    Article  ADS  Google Scholar 

  45. F. Büttner et al., Phys. Rev. B 87, 134422 (2013)

    Google Scholar 

  46. F. Büttner et al., Nat. Phys. 11, 225 (2015)

    Google Scholar 

  47. A. Fert et al., Nat. Nano. 8, 152 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

A number of students, postdocs and colleagues have contributed to these experiments to all of which we are indebted. In particular we would like to acknowledge T. Schulz, S.-J. Noh, T. Zacke, R. Lo Conte and G. Karnad for much of the experimental and simulations work carried out.

A large part of the work was performed within the EU projects MAGWIRE (FP7-ICT-2009-5 257707), WALL (FP7-PEOPLE-2013-ITN 608031) the European Research Council Starting Independent Researcher Grant MASPIC (No. ERC-2007-StG 208162) and furthermore the Graduate School of Excellence “Materials Science in Mainz” (No. GSC266), the Deutsche Forschungsgemeinschaft (DFG) and the State Research Center of Innovative and Emerging Materials. We thank O. Tchernychyov and E. Martinez for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Krüger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krüger, B., Kläui, M. (2016). Topological Defects in Nanostructures—Chiral Domain Walls and Skyrmions. In: Seidel, J. (eds) Topological Structures in Ferroic Materials. Springer Series in Materials Science, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-25301-5_9

Download citation

Publish with us

Policies and ethics