Skip to main content

Functional Topologies in (Multi-) Ferroics: The Ferroelastic Template

  • Chapter
  • First Online:
Topological Structures in Ferroic Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 228))

Abstract

Ferroelastic domain boundaries are templates for functional interfaces with supercondunctivity, ferroelectricity and ferromagnetism constraint to the domain boundary. The topologies of these functional interfaces are described for three, two and one dimension(s), thus showing the basic topological approch to Domain Boundary Engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.K.H. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  2. K. Bhattacharya, Microstructure of Martensite: Why It Forms and How It Gives Rise to Shape Memory Effects (Oxford University Press, Oxford, 2004)

    Google Scholar 

  3. A.S. Sidorkin, Domain Structure in Ferroelectrics and Related Materials (Cambridge International Science Publishing, Cambridge, 2006)

    Google Scholar 

  4. M. Lines, A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  5. A.G. Khachaturyan, The Theory of Structural Transformations in Solids (Wiley, New York, 1983)

    Google Scholar 

  6. J.F. Scott, Ferroelectric Memories (Springer, Berlin, 2000)

    Book  Google Scholar 

  7. K.M. Rabe, J.M. Triscone, C.H. Ahn, Physics of Ferroelectrics: A Modern Perspective (Springer, Berlin, 2007)

    Google Scholar 

  8. D. Jiles, Introduction to Magnetism and Magnetic Materials (Chapman & Hall, London, 1998)

    Google Scholar 

  9. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, New York, 2008)

    Book  Google Scholar 

  10. E. Pavarini, E. Koch, U. Schollwock, Emergent Phenomena in Correlated Matter (Forschungszentrum Julich, Julich, 2013)

    Google Scholar 

  11. G. Catalan, J. Seidel, R. Ramesh, J.F. Scott, Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012)

    Article  ADS  Google Scholar 

  12. M. Dawber, K.M. Rabe, J.F. Scott, Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083 (2005)

    Article  ADS  Google Scholar 

  13. P. Weiss, The variation of ferromagnetism with temperature. Comptes Rendus 143, 1136 (1906)

    Google Scholar 

  14. E.K.H. Salje, Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. Chemphyschem 11, 940 (2010)

    Article  Google Scholar 

  15. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006)

    Article  ADS  Google Scholar 

  16. N. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005)

    Article  Google Scholar 

  17. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123 (2005)

    Article  ADS  Google Scholar 

  18. A. Kadomtseva, Y. Popov, A. Pyatakov, G. Vorob’ev, A.K. Zvezdin, D. Viehland, Phase transitions in multiferroic BiFeO3 crystals, thin-layers, and ceramics: enduring potential for a single phase, room-temperature magnetoelectric ‘holy grail’. Phase Transit. 79, 1019 (2006)

    Article  Google Scholar 

  19. E.K.H. Salje, Ferroelastic materials. Annu. Rev. Mater. Res. 42, 265 (2012)

    Article  ADS  Google Scholar 

  20. E.K.H. Salje, X. Ding, O. Aktas, Domain Glass. Physica Status Solidi B 251, 2061 (2014)

    Article  ADS  Google Scholar 

  21. D.D. Viehland, E.K.H. Salje, Domain boundary-dominated systems: adaptive structures and functional twin boundaries. Adv. Phys. 63(4) (2014)

    Google Scholar 

  22. G.S., Brady, H.R., Clauser, J.A., Vaccari, Materials Handbook 15th (ed.). McGraw-Hill Professional, p. 633 (2002). ISBN 978-0-07-136076-0

    Google Scholar 

  23. A. Pelton, S. Russell, J. DiCello, The physical metallurgy of nitinol for medical applications. JOM 55, 33 (2003)

    Article  ADS  Google Scholar 

  24. T.M. Mereau, T.C. Ford, Nitinol compression staples for bone fixation in foot surgery. J. Am. Podiatr. Med. Assoc. 96, 102 (2006)

    Article  Google Scholar 

  25. K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  26. A. Aird, E.K.H. Salje, Sheet superconductivity in twin walls: experimental evidence of WO3-x. J. Phys. Condens. Matter 10, L377 (1998)

    Google Scholar 

  27. A. Aird, M.C. Domeneghetti, F. Mazzi, V. Tazzoli, E.K.H. Salje, Sheet superconductivity in WO3-x: crystal structure of the tetragonal matrix. J. Phys. Condens. Matter 10, L569 (1998)

    Google Scholar 

  28. E. Salje, H. Zhang, Domain boundary engineering. Ph. Transit. 82, 452 (2009)

    Article  Google Scholar 

  29. Y. Kim, M. Alexe, E.K.H. Salje, Nanoscale properties of thin twin walls and surface layers in piezoelectric WO3-x. Appl. Phys. Lett. 96, 032904 (2010)

    Article  ADS  Google Scholar 

  30. S. Reich, G. Leitus, R. Popovitz-Biro, A. Goldbourt, S. Vega, J. Supercond. Nov. Magn. 22, 343 (2009)

    Article  Google Scholar 

  31. B.O. Loopstra, P. Boldrini, Neutron diffraction investigation of WO3. Acta Crystallogr. 21, 15 (1966)

    Article  Google Scholar 

  32. E.K.H. Salje, S. Rehmann, F. Pobell, D. Morris, K.S. Knight, R. Herrmanndorfer, M. Dove, Crystal structure and paramagnetic behaviour of epsilon-WO3-x. J. Phys. Condens. Matter 9, 6563 (1997)

    Article  ADS  Google Scholar 

  33. R. Diehl, G. Brandt, E.K.H. Salje, Crystal Structure of triclinic WO3. Acta Crystallogr. B 34, 1105 (1978)

    Article  Google Scholar 

  34. E. Salje, K. Viswanathan, Physical properties and phase transitions in WO3. Acta Crystallogr. A 31, 356 (1975)

    Article  ADS  Google Scholar 

  35. K.R. Locherer, I.P. Swainson, E.K.H. Salje, Phase transitions in tungsten trioxide at high temperatures—a new look. J. Phys. Condens. Matter 11, 6737 (1999)

    Article  ADS  Google Scholar 

  36. E. Salje, A.F. Carley, M. Roberts, Effect of reduction and temperature on the electronic core levels of tungsten and molybdenum in WO3 and WxMo1-xO3—photoelectron spectroscopic study. J. Solid State Chem. 29, 237 (1979)

    Article  ADS  Google Scholar 

  37. O.F. Schimer, E. Salje, Conduction bipolarons in low-temperature crystalline WO3-x. J. Phys. Condens. Matter 13, 1067 (1980)

    Google Scholar 

  38. O.F. Schirmer, E. Salje, W5+ polarons in crystalline low-temperature WO3 electron-spin-resonance and optical absorption. Solid State Commun. 33, 333 (1980)

    Article  ADS  Google Scholar 

  39. H. Al-Kandari, E. Al-Kharafi, N. Al-Awadi, O.M. El-Dusouqui, A. Katrib, Surface electronic structure—catalytic activity relationship of partially reduced WO3 bulk or deposited on TiO2. J. Electron Spectrosc. Relat. Phenom. 151, 128 (2006)

    Article  Google Scholar 

  40. J. Novak, E.K.H. Salje, Surface structure of domain walls. J. Phys. Condens. Matter 10, L359 (1998)

    Article  ADS  Google Scholar 

  41. J. Novak, E.K.H. Salje, Simulated mesoscopic structures of a domain wall in a ferroelastic lattice. Eur. Phys. J. B 4, 279 (1998)

    Article  ADS  Google Scholar 

  42. S. Conti, U. Weikard, Interaction between free boundaries and domain walls in ferroelastics. Eur. Phys. J. B 41, 413 (2004)

    Article  ADS  Google Scholar 

  43. Y. Ishibashi, M. Iwata, E. Salje, Polarization reversals in the presence of 90 degrees domain walls. Jpn. J. Appl. Phys. Part 1 44, 7512 (2005)

    Article  Google Scholar 

  44. Y. Ishibashi, E. Salje, A theory of ferroelectric 90 degree domain wall. J. Phys. Soc. Jpn. 71, 2800 (2002)

    Article  ADS  Google Scholar 

  45. D.C. Palmer, E.K.H. Salje, W.W. Schmahl, Phase transitions in leucite- x-ray diffraction studies. Phys. Chem. Miner. 16, 714 (1989)

    Article  ADS  Google Scholar 

  46. E. Salje, Thermodynamics of plagioclases. 1: theory of the I bar 1—P bar 1 phase transition in anorthite and ca-rich palgioclases. Phys. Chem. Miner. 14, 181 (1987)

    Article  ADS  Google Scholar 

  47. E. Salje, V. Devarajan, U. Bismayer, Phase transitions in Pb3(P1-xAsxO4)2—influence of the central peak and flip mode on the Raman-scattering of hard modes. J. Phys. C 16, 5233 (1983)

    Article  ADS  Google Scholar 

  48. E.K.H. Salje, U. Bismayer, Hard mode spectroscopy: the concept and applications. Conference: Workshop on the State-of-the-Art of Hard Mode Spectroscopy, Lyon, France, Sept 26–27 1996. Ph. Transit. 63, 1 (1997)

    Google Scholar 

  49. E.K.H. Salje, Hard mode spectroscopy—experimental studies of structural phase–transitions. Ph. Transit. 37, 83 (1992)

    Article  Google Scholar 

  50. E.K.H. Salje, A. Buckley, G. Van Tendeloo, Y. Ishibashi, G.L. Nord, Needle twins and right-angled twins in minerals: comparison between experiment and theory. Am. Mineral. 83, 811 (1998)

    Article  Google Scholar 

  51. E.K.H. Salje, Y. Ishibashi, Mesoscopic structures in ferroelastic crystals: needle twins and right-angled domains. J. Phys. Condens. Matter 8, 8477 (1996)

    Article  ADS  Google Scholar 

  52. J. Chrosch, E.K.H. Salje, Near-surface domain structures in uniaxially stressed SrTiO3. J. Phys. Condens. Matter 10, 2817 (1998)

    Article  ADS  Google Scholar 

  53. M.A. Carpenter, Mechanisms and kinetics of Al-Si ordering in anorthite: 1. incommensurate structure and domain coarsening. Am. Mineral. 76, 1120 (1991)

    Google Scholar 

  54. B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, S.-E. Park, A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O-3 solid solution. Appl. Phys. Lett. 74, 2059 (1999)

    Article  ADS  Google Scholar 

  55. B. Noheda, D.E. Cox, G. Shirane, J. Gao, Z.-G. Ye, Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO(3). Phys. Rev. B 66, 054104 (2002)

    Article  ADS  Google Scholar 

  56. B. Noheda, Structure and high-piezoelectricity in lead oxide solid solutions. Curr. Opin. Solid State Mater. Sci. 6, 27 (2002)

    Article  ADS  Google Scholar 

  57. E.K.H. Salje, X. Ding, Z. Zhao, T. Lookman, A. Saxena, Thermally activated avalanches: jamming and the progression of needle domains. Phys. Rev. B 83, 104109 (2011)

    Article  ADS  Google Scholar 

  58. X. Ding, Z. Zhao, T. Lookman, E.K.H. Salje, High junction and twin boundary densities in driven dynamical systems. Adv. Mater. 24, 5385 (2012)

    Article  Google Scholar 

  59. S. Li, X. Ding, J. Ren, X. Moya, J. Li, J. Sun, E.K.H. Salje, Strain-controlled thermal conductivity in ferroic twinned films. Sci. Rep. 4, 6375 (2014)

    Article  ADS  Google Scholar 

  60. E.K.H. Salje, X. Ding, Z. Zhao, Noise and finite size effects in multiferroics with strong elastic interactions. Appl. Phys. Lett. 102, 152909 (2013)

    Article  ADS  Google Scholar 

  61. Z. Zhao, X. Ding, E.K.H. Salje, Flicker vortex structures in multiferroic materials. Appl. Phys. Lett. 105, 112906 (2014)

    Article  ADS  Google Scholar 

  62. W.T. Lee, E.K.H. Salje, U. Bismayer, Domain-wall structure and domain-wall strain. J. Appl. Phys. 93, 9890 (2003)

    Article  ADS  Google Scholar 

  63. W.T. Lee, E.K.H. Salje, U. Bismayer, Domain wall diffusion and domain wall softening. J. Phys.: Condens. Matter 15, 1353 (2003)

    ADS  Google Scholar 

  64. B. Houchmandzadeh, J. Lajzerowicz, E.K.H. Salje, Order prameter coupling and chirality of domain-walls. J. Phys. Condens. Matter 4, 9779 (1992)

    Article  ADS  Google Scholar 

  65. J. Hong, D. Vanderbilt, First-principles theory and calculation of flexoelectricity. Phys. Rev. B 88, 174107 (2013)

    Article  ADS  Google Scholar 

  66. A.K. Tagantsev, A.S. Yurkov, Flexoelectric effect in finite samples. J. Appl. Phys. 112, 044103 (2012)

    Article  ADS  Google Scholar 

  67. E.A. Eliseev, A.N. Morozovska, Y. Gu, A. Borisevich, L.-Q. Chen, V. Gopalan, S.V. Kalinin, Conductivity of twin-domain-wall/surface junctions in ferroelastics: interplay of deformation potential, octahedral rotations, improper ferroelectricity, and flexoelectric coupling. Phys. Rev. B 86, 085416 (2012)

    Article  ADS  Google Scholar 

  68. L. Goncalves-Ferreira, S.A.T. Redfern, E. Artacho, E.K.H. Salje, Ferrielectric twin walls in CaTiO(3). Phys. Rev. Lett. 101, 097602 (2008)

    Article  ADS  Google Scholar 

  69. S. Van Aert, S. Turner, R. Delville, D. Schryvers, G. Van Tendeloo, E.K.H. Salje, Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy. Adv. Mater. 24, 523 (2012)

    Article  Google Scholar 

  70. H. Yokota, H. Usami, R. Haumont, P. Hicher, J. Kaneshiro, E.K.H. Salje, Y. Uesu, Direct evidence of polar nature of ferroelastic twin boundaries in CaTiO3 obtained by second harmonic generation microscope. Phys. Rev. B 89, 144109 (2014)

    Article  ADS  Google Scholar 

  71. E.K.H. Salje, O. Aktas, M.A. Carpenter, J.F. Scott, Domains within domains and walls within walls: evidence for polar domains in cryogenic SrTiO3. Phys. Rev. Lett. 111, 247603 (2013)

    Article  ADS  Google Scholar 

  72. O. Aktas, S. Crossley, M.A. Carpenter, E.K.H. Salje, Polar correlations and defect-induced ferroelectricity in cryogenic KTaO3. Phys. Rev. B 90, 165309 (2014)

    Article  ADS  Google Scholar 

  73. S. Prosandeev, A. Malashevich, Z. Gui, L. Louis, R. Walter, I. Souza, L. Bellaiche, Natural optical activity and its control by electric field in electrotoroidic systems. Phys. Rev. B 87, 195111 (2013)

    Article  ADS  Google Scholar 

  74. T. Zykova-Timan, E.K.H. Salje, Highly mobile vortex structures inside polar twin boundaries in SrTiO3. Appl. Phys. Lett. 104, 082907 (2014)

    Article  ADS  Google Scholar 

  75. J.F. Scott, E.K.H. Salje, M.A. Carpenter, Domain wall damping and elastic softening in SrTiO3: evidence for polar twin walls. Phys. Rev. Lett. 109, 187601 (2012)

    Article  ADS  Google Scholar 

  76. E.K.H. Salje, Z. Zhao, X. Ding, J. Sun, Mechanical spectroscopy in twinned minerals: simulation of resonance patterns at high frequencies. Am. Mineral. 98, 1449 (2013)

    Article  Google Scholar 

  77. L. Zhang, E.K.H. Salje, X. Ding, J. Sun, Strain rate dependence of twinning avalanches at high speed impact. Appl. Phys. Lett. 104, 162906 (2014)

    Article  ADS  Google Scholar 

  78. E.K.H. Salje, X. Wang, X. Ding, J. Sun, Simulating acoustic emission: The noise of collapsing domains. Phys. Rev. B 90, 064103 (2014)

    Article  ADS  Google Scholar 

  79. T. Tybell, P. Paruch, T. Giamarchi, J.M. Triscone, Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O\(_{3}\) thin films. Phys. Rev. Lett. 89, 097601 (2002)

    Article  ADS  Google Scholar 

  80. R. McQuaid, A. Gruverman, J.F. Scott, J.M. Gregg, Self-similar nested flux closure structures in a tetragonal ferroelectric. Nano Lett. 14, 4230 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

EKHS is grateful for support by EPSRC (EP/K009702/1) and the Leverhulme Trust (RPG-2012-564).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. H. Salje .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salje, E.K.H., Aktas, O., Ding, X. (2016). Functional Topologies in (Multi-) Ferroics: The Ferroelastic Template. In: Seidel, J. (eds) Topological Structures in Ferroic Materials. Springer Series in Materials Science, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-25301-5_4

Download citation

Publish with us

Policies and ethics