Skip to main content

Magnetic Solitons in Superlattices

  • Chapter
  • First Online:
Book cover Topological Structures in Ferroic Materials

Abstract

Magnetic solitons in antiferromagnetic superlattices can be used for vertical data transfer of information. In this chapter, we introduce this concept and summarise recent results of our group where controlled soliton nucleation and propagation was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Hesjedal, T. Phung, Magnetic logic element based on an S-shaped Permalloy structure. Appl. Phys. Lett. 96, 072501 (2010)

    Google Scholar 

  2. D.A. Allwood, Characterization of submicrometer ferromagnetic NOT gates. J. Appl. Phys. 95, 8264 (2004)

    Google Scholar 

  3. L. O’Brien et al., Bidirectional magnetic nanowire shift register. Appl. Phys. Lett. 95, 232502 (2009)

    Google Scholar 

  4. D.A. Allwood et al., Magnetic domain-wall logic. Science 309, 1688–1692 (2005)

    Google Scholar 

  5. J.H. Franken, H.J.M. Swagten, B. Koopmans, Shift registers based on magnetic domain wall ratchets with perpendicular anisotropy. Nat. Nanotechnol. 7, 499–503 (2012)

    Google Scholar 

  6. S.S.P. Parkin, M. Hayashi, L. Thomas, Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008)

    Google Scholar 

  7. M. Hayashi, L. Thomas, R. Moriya, C. Rettner, S.S.P. Parkin, Current-controlled magnetic domain-wall nanowire shift register. Science 320, 209–211 (2008)

    Google Scholar 

  8. M.A. Basith, S. McVitie, D. McGrouther, J.N. Chapman, J.M.R. Weaver, Direct comparison of domain wall behavior in permalloy nanowires patterned by electron beam lithography and focused ion beam milling. J. Appl. Phys. 110, 083904 (2011)

    Google Scholar 

  9. J. Garcia, A. Thiaville, J. Miltat, MFM imaging of nanowires and elongated patterned elements. J. Magn. Magn. Mater. 249, 163–169 (2002)

    Google Scholar 

  10. Y. Jang, S.R. Bowden, M. Mascaro, J. Unguris, C.A. Ross, Formation and structure of 360 and 540 degree domain walls in thin magnetic stripes. Appl. Phys. Lett. 100, 062407 (2012)

    Google Scholar 

  11. M. Laufenberg et al., Observation of thermally activated domain wall transformations. Appl. Phys. Lett. 88, 052507 (2006)

    Google Scholar 

  12. M. Klaäui et al., Head-to-head domain-wall phase diagram in mesoscopic ring magnets. Appl. Phys. Lett. 85, 5637 (2004)

    Google Scholar 

  13. M. Kläui, Head-to-head domain walls in magnetic nanostructures. J. Phys. Condens. Matter 20, 313001 (2008)

    Article  ADS  Google Scholar 

  14. P. Roy et al., Antivortex domain walls observed in permalloy rings via magnetic force microscopy. Phys. Rev. B 79, 060407 (2009)

    Google Scholar 

  15. D. Petit et al., Magnetic imaging of the pinning mechanism of asymmetric transverse domain walls in ferromagnetic nanowires. Appl. Phys. Lett. 97, 233102 (2010)

    Article  ADS  Google Scholar 

  16. R.P. Cowburn, D.A. Allwood, G. Xiong, M.D. Cooke, Domain wall injection and propagation in planar Permalloy nanowires. J. Appl. Phys. 91, 6949 (2002)

    Google Scholar 

  17. T. Ono, Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 80(284), 468–470 (1999)

    Google Scholar 

  18. K. Shigeto, T. Shinjo, T. Ono, Injection of a magnetic domain wall into a submicron magnetic wire. Appl. Phys. Lett. 75, 2815 (1999)

    Article  ADS  Google Scholar 

  19. J. Akerman, M. Muñoz, M. Maicas, J.L. Prieto, Stochastic nature of the domain wall depinning in permalloy magnetic nanowires. Phys. Rev. B 82, 064426 (2010)

    Article  ADS  Google Scholar 

  20. M.T. Bryan, D. Atkinson, D.A. Allwood, Multimode switching induced by a transverse field in planar magnetic nanowires. Appl. Phys. Lett. 88, 032505 (2006)

    Google Scholar 

  21. M.-Y. Im, L. Bocklage, P. Fischer, G. Meier, Direct observation of stochastic domain-wall depinning in magnetic nanowires. Phys. Rev. Lett. 102, 147204 (2009)

    Google Scholar 

  22. M.-Y. Im, L. Bocklage, G. Meier, P. Fischer, Magnetic soft X-ray microscopy of the domain wall depinning process in permalloy magnetic nanowires. J. Phys. Condens. Matter 24, 024203 (2012)

    Google Scholar 

  23. D. Petit, A.-V. Jausovec, D. Read, R.P. Cowburn, Domain wall pinning and potential landscapes created by constrictions and protrusions in ferromagnetic nanowires. J. Appl. Phys. 103, 114307 (2008)

    Article  ADS  Google Scholar 

  24. A. Beguivin, L.A. O’Brien, A.V. Jausovec, D. Petit, R.P. Cowburn, Magnetisation reversal in permalloy nanowires controlled by near-field charge interactions. Appl. Phys. Lett. 99, 142506 (2011)

    Google Scholar 

  25. T.J. Hayward et al., Pinning induced by inter-domain wall interactions in planar magnetic nanowires. Appl. Phys. Lett. 96, 052502 (2010)

    Article  ADS  Google Scholar 

  26. L. O’Brien et al., Tunable remote pinning of domain walls in magnetic nanowires. Phys. Rev. Lett. 106, 087204 (2011)

    Google Scholar 

  27. L. O’Brien et al., Near-field interaction between domain walls in adjacent permalloy nanowires. Phys. Rev. Lett. 103, 077206 (2009)

    Google Scholar 

  28. Y. Nakatani, A. Thiaville, J. Miltat, Head-to-head domain walls in soft nano-strips: a refined phase diagram. J. Magn. Magn. Mater. 290–291, 750–753 (2005)

    Article  Google Scholar 

  29. M. Eltschka et al., Nonadiabatic spin torque investigated using thermally activated magnetic domain wall dynamics. Phys. Rev. Lett. 105, 056601 (2010)

    Google Scholar 

  30. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, S.S.P. Parkin, Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires. Nat. Phys. 3, 21–25 (2006)

    Article  Google Scholar 

  31. S. Lepadatu et al., Domain-wall spin-torque resonators for frequency-selective operation. Phys. Rev. B 81, 060402 (2010)

    Article  ADS  Google Scholar 

  32. G.S.D. Beach, M. Tsoi, J.L. Erskine, Current-induced domain wall motion. J. Magn. Magn. Mater. 320, 1272–1281 (2008)

    Article  ADS  Google Scholar 

  33. M. Donolato et al., On-chip manipulation of protein-coated magnetic beads via domain-wall conduits. Adv. Mater. 22, 2706–2710 (2010)

    Google Scholar 

  34. A. Beguivin et al., Simultaneous magnetoresistance and magneto-optical measurements of domain wall properties in nanodevices. J. Appl. Phys. 115, 17C718 (2014)

    Article  Google Scholar 

  35. R. Mattheis, S. Glathe, M. Diegel, U. Hübner, Concepts and steps for the realization of a new domain wall based giant magnetoresistance nanowire device: from the available 24 multiturn counter to a 212 turn counter. J. Appl. Phys. 111, 113920 (2012)

    Google Scholar 

  36. Patent-Cowburn-US20070047156.pdf

    Google Scholar 

  37. A. Fernández-Pacheco et al., Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci. Rep. 3, 1492 (2013)

    Article  ADS  Google Scholar 

  38. Magnetic Data Storage (2010). https://www.google.com/patents/US20100128510?dq=cowburn+US+20100128510&hl=en&sa=X&ei=XlVrVOKPENKvacy3gogM&ved=0CB8Q6AEwAA

  39. S. Parkin, Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. Phys. Rev. Lett. 67, 3598–3601 (1991)

    Article  ADS  Google Scholar 

  40. E.L. Starostin, G.H.M. van der Heijden, The shape of a Möbius strip. Nat. Mater. 6, 563–567 (2007)

    Google Scholar 

  41. D. Mills, Surface spin-flop state in a simple antiferromagnet. Phys. Rev. Lett. 20, 18–21 (1968)

    Google Scholar 

  42. D. Mills, W. Saslow, Surface effects in the Heisenberg antiferromagnet. Phys. Rev. 171, 488–506 (1968)

    Google Scholar 

  43. D. Elefant, R. Schäfer, J. Thomas, H. Vinzelberg, C. Schneider, Competition of spin-flip and spin-flop dominated processes in magnetic multilayers: magnetization reversal, magnetotransport, and domain structure in the NiFe/Cu system. Phys. Rev. B 77, 014426 (2008)

    Google Scholar 

  44. J. Meersschaut et al., Hard-axis magnetization behavior and the surface spin-flop transition in antiferromagnetic Fe/Cr(100) superlattices. Phys. Rev. B 73, 144428 (2006)

    Article  ADS  Google Scholar 

  45. C. Micheletti, R. Griffiths, J. Yeomans, Surface spin-flop and discommensuration transitions in antiferromagnets. Phys. Rev. B 59, 6239–6249 (1999)

    Article  ADS  Google Scholar 

  46. S. Te Velthuis, J. Jiang, S. Bader, G. Felcher, Spin flop transition in a finite antiferromagnetic superlattice: evolution of the magnetic structure. Phys. Rev. Lett. 89, 127203 (2002)

    Google Scholar 

  47. U.K. Rößler, A.N. Bogdanov, Magnetic phase diagrams for models of synthetic antiferromagnets. J. Appl. Phys. 101, 09D105 (2007)

    Google Scholar 

  48. U. Rößler, A. Bogdanov, Magnetic states and reorientation transitions in antiferromagnetic superlattices. Phys. Rev. B 69, 094405 (2004)

    Google Scholar 

  49. J.-P. Nguenang, A.J. Kenfack, T.C. Kofané, Soliton-like excitations in a deformable spin model. J. Phys. Condens. Matter 16, 373–403 (2004)

    Article  ADS  Google Scholar 

  50. M.G. Pini et al., Surface spin-flop transition in a uniaxial antiferromagnetic Fe/Cr superlattice induced by a magnetic field of arbitrary direction. J. Phys. Condens. Matter 19, 136001 (2007)

    Article  ADS  Google Scholar 

  51. R. Wang, D. Mills, E. Fullerton, J. Mattson, S. Bader, Surface spin-flop transition in Fe/Cr(211) superlattices: Experiment and theory. Phys. Rev. Lett. 72, 920–923 (1994)

    Article  ADS  Google Scholar 

  52. S. Rakhmanova, D. Mills, E. Fullerton, Low-frequency dynamic response and hysteresis in magnetic superlattices. Phys. Rev. B 57, 476–484 (1998)

    Article  ADS  Google Scholar 

  53. R. Lavrijsen et al., Magnetism in Co[sub 80-x]Fe[sub x]B[sub 20]: effect of crystallization. J. Appl. Phys. 109, 093905 (2011)

    Google Scholar 

  54. E. Fullerton, M. Conover, J. Mattson, C. Sowers, S. Bader, Oscillatory interlayer coupling and giant magnetoresistance in epitaxial Fe/Cr(211) and (100) superlattices. Phys. Rev. B 48, 15755–15763 (1993)

    Article  ADS  Google Scholar 

  55. A. Fernández-Pacheco et al., Controllable nucleation and propagation of topological magnetic solitons in CoFeB/Ru ferrimagnetic superlattices. Phys. Rev. B—Condens. Matter Mater. Phys. 86, (2012)

    Google Scholar 

  56. B. Dieny, J.P. Gavigan, J.P. Rebouillat, Magnetisation processes, hysteresis and finite-size effects in model multilayer systems of cubic or uniaxial anisotropy with antiferromagnetic coupling between adjacent ferromagnetic layers. J. Phys. Condens. Matter 2, 159–185 (1990)

    Article  ADS  Google Scholar 

  57. A. Fernández-Pacheco, No Title. to be Publ.

    Google Scholar 

  58. E.Y. Vedmedenko, D. Altwein, Topologically protected magnetic helix for all-spin-based applications. Phys. Rev. Lett. 112, 017206 (2014)

    Google Scholar 

  59. D. Petit, R. Mansell, A. Fernández-Pacheco, J.H. Lee, R.P. Cowburn, in VLSI: Circuits for Emerging Applications, ed. by T. Wojcicki (CRC Press, Boca Raton, 2014)

    Google Scholar 

  60. R. Lavrijsen et al., Magnetic ratchet for three-dimensional spintronic memory and logic. Nature 493, 647–650 (2013)

    Google Scholar 

  61. J.H. Lee et al., Soliton propagation in micron-sized magnetic ratchet elements. Appl. Phys. Lett. 104, 232404 (2014)

    Article  ADS  Google Scholar 

  62. J.-H. Lee et al., Domain imaging during soliton propagation in a 3D magnetic ratchet. SPIN 03, 1340013 (2013)

    Google Scholar 

  63. R. Lavrijsen et al., Multi-bit operations in vertical spintronic shift registers. Nanotechnology 25, 105201 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

A. Fernández-Pacheco acknowledges support by EPSRC and Winton Program for the Physics of Sustainability. R. Lavrijsen acknowledges support from the Netherlands Organization for Scientific Research and Marie Curie Cofund Action. We acknowledge research funding from the European Community under the Seventh Framework Programme Contracts No. 247368: 3SPIN and No. 309589: M3d.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalio Fernández-Pacheco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández-Pacheco, A. et al. (2016). Magnetic Solitons in Superlattices. In: Seidel, J. (eds) Topological Structures in Ferroic Materials. Springer Series in Materials Science, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-25301-5_10

Download citation

Publish with us

Policies and ethics