Systems of Equations

  • Antonio Cañada
  • Salvador Villegas
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)


This chapter is devoted to the study of L p Lyapunov-type inequalities for linear systems of ordinary differential equations with different boundary conditions (which include the case of Neumann, Dirichlet, periodic, and antiperiodic boundary value problems) and for any constant p ≥ 1. Elliptic problems are also considered. As in the scalar case, the results obtained in the linear case are combined with Schauder fixed point theorem to provide several results about the existence and uniqueness of solutions for resonant nonlinear systems. In addition, we study the stable boundedness of linear periodic conservative systems. The proof uses in a fundamental way the nontrivial relation (proved in Chap.  2) between the best Lyapunov constants and the minimum value of some especial constrained or unconstrained minimization problems (depending on the considered problems are resonant or nonresonant, respectively).


  1. 1.
    Ahmad, S.: An existence theorem for periodically perturbed conservative systems. Mich. Math. J. 20, 385–392 (1973)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bates, P.W.: Solutions of nonlinear elliptic systems with meshed spectra. Nonlinear Anal. 4, 1023–1030 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brown, K.J., Lin, S.S.: Periodically perturbed conservative systems and a global inverse function theorem. Nonlinear Anal. 4, 193–201 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cañada, A., Montero, J.A., Villegas, S.: Liapunov-type inequalities and Neumann boundary value problems at resonance. Math. Inequal. Appl. 8 459–475 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cañada, A., Villegas, S.: Stability, resonance and Lyapunov inequalities for periodic conservative systems. Nonlinear Anal. 74, 1913–1925 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cañada, A., Villegas, S.: Matrix Lyapunov inequalities for ordinary and elliptic partial differential equations. Topological Methods Nonlinear Anal. 45, 326–329 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Choquet, G.: Topology. Academic, New York (1966)zbMATHGoogle Scholar
  8. 8.
    Clark, S., Hinton, D.: A Liapunov inequality for linear hamiltonian systems. Math. Inequal. Appl. 1, 201–209 (1998)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Clark, S., Hinton, D.: Positive eigenvalues of second order boundary value problems and a theorem of M.G. Krein. Proc. Am. Math. Soc. 130, 3005–3015 (2002)Google Scholar
  10. 10.
    Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)CrossRefzbMATHGoogle Scholar
  11. 11.
    Fonda, A., Mawhin, J.: Iterative and variational methods for the solvability of some semilinear equations in Hilbert spaces. J. Differ. Equ. 98, 355–375 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)zbMATHGoogle Scholar
  13. 13.
    Krein, M.G.: On tests for stable boundedness of solutions of periodic canonical systems. Am. Math. Soc. Translat. Ser. (2) 120, 71–110 (1983)Google Scholar
  14. 14.
    Lazer, A.C.: Application of a lemma on bilinear forms to a problem in nonlinear oscillations. Proc. Am. Math. Soc. 33, 89–94 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lang, S.: Algebra. Addison-Wesley, Reading, MA (1965)zbMATHGoogle Scholar
  16. 16.
    Lang, S.: Analysis.II. Addison-Wesley, Reading, MA (1969)Google Scholar
  17. 17.
    Lazer, A.C., Sánchez, D.A.: On periodically perturbed conservative systems. Mich. Math. J. 16, 193–200 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lee, E.B., Markus, L.: Foundations of Optimal Control Theory. Wiley, New York (1967)zbMATHGoogle Scholar
  19. 19.
    Magnus, W., Winkler, S.: Hill’s Equation. Dover Publications, New York (1979)zbMATHGoogle Scholar
  20. 20.
    Mawhin, J.: Contractive mappings and periodically perturbed conservative systems. Arch. Math. (Brno) 12, 67–74 (1976)Google Scholar
  21. 21.
    Mawhin, J.: Conservative systems of semilinear wave equations with periodic-Dirichlet boundary conditions. J. Differ. Equ. 42, 116–128 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pinasco, J.P.: Lyapunov-Type Inequalities. With Applications to Eigenvalue Problems. Springer Briefs in Mathematics. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  23. 23.
    Reid, W.T.: A matrix Liapunov inequality. J. Math. Anal. Appl. 32, 424–434 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Reid, W.T.: A generalized Liapunov inequality. J. Differ. Equ. 13, 182–196 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Reid, W.T.: Interrelations between a trace formula and Liapunov type inequalities. J. Differ. Equ. 23, 448–458 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ward, J.R.: The existence of periodic solutions for nonlinear perturbed conservative systems. Nonlinear Anal. 3, 697–705 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zhang, M., Li, W.: A Lyapunov-type stability criterion using L α norms. Proc. Am. Math. Soc. 130, 3325–3333 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zhang, M.: Certain classes of potentials for p-Laplacian to be non-degenerate. Math. Nachr. 278, 1823–1836 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Antonio Cañada
    • 1
  • Salvador Villegas
    • 1
  1. 1.Department of Mathematical AnalysisUniversity of GranadaGranadaSpain

Personalised recommendations