Skip to main content

Impact of Probiotics and Gut Microbiota on Host Behavior

  • Chapter
  • First Online:
Microbes in Food and Health

Abstract

Probiotic bacteria are living organisms that inhabit the gut and contribute towards the health of the host. The idea that implanting the intestines with probiotic bacteria may improve quality of life and mental health is not a new one. Accumulating clinical evidences suggest that probiotics can modulate the stress response and improve mood and anxiety symptoms in patients with chronic fatigue and irritable bowel syndrome. One such organism is Lactobacillus rhamnosus (JB-1), which has shown antidepressant and anxiolytic-like properties in mice as observed recently. Probiotic supplementation can also lead to significant improvement in motor coordination and spontaneous locomotor activity, in addition to reduction in anxiety and cognitive behavior in rats. There are increasing, but largely indirect, evidences to point out the effect of commensal gut microbiota on the central nervous system. Microbes in gastrointestinal (GI) tract which constitute normal gut microbiota are represented by a wide variety of bacterial species. Emerging studies have shown that probiotic bacteria can directly communicate with the central nervous system by way of the vagal sensory nerve fibers and the peripheral immune system. Indeed, experimental studies have shown that even minute doses of these bacteria within the gastrointestinal tract are capable of influencing neurotransmission. Probiotic bacteria and gut microbiota can exert numerous effects on the intestinal neuroimmune system and influence a variety of host functions such as metabolic activity, immune response, and physiological functions. Thus, the emerging concept of probiotics on “microbiota–gut–brain axis” provides a novel insight for improved understanding of their potential role in psychological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bao Y, Zhang Y, Zhang Y, Liu Y, Wang S, Dong X, Wang Y, Zhang H (2010) Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21:695–701

    Article  CAS  Google Scholar 

  • Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113:411–417

    Article  CAS  Google Scholar 

  • Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X et al (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139:2102–2112

    Article  CAS  Google Scholar 

  • Bercik P, Denou E, Collins J, Jackson W, Lu J et al (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141:599–609

    Article  CAS  Google Scholar 

  • Bercik P, Collins SM, Verdu EF (2012) Microbes and the gut-brain axis. Neurogastroenterol Motil 24:405–413

    Article  CAS  Google Scholar 

  • Bravo JA, ForsytheP CMV, Escaravage E, Savignac HM, Dinan TG et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108:16050–16055

    Article  CAS  Google Scholar 

  • Browning KN, Mendelowitz D (2003) Musings on the wanderer: what’s new in our understanding of vago-vagal reflexes? II. Integration of afferent signaling from the viscera by the nodose ganglia. Am J Physiol Gastrointest Liver Physiol 284:G8–G14

    Article  CAS  Google Scholar 

  • Chan ES, Zhang Z (2005) Bioencapsulation by compression coating of probiotic bacteria for their protection in an acidic medium. Process Biochem 40:3346–3351

    Article  CAS  Google Scholar 

  • Cryan JF, O’Mahony SM (2011) The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23:187–192

    Article  CAS  Google Scholar 

  • Dantzer R, Konsman JP, Bluthe RM, Kelley KW (2000) Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton Neurosci 85:60–65

    Article  CAS  Google Scholar 

  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    Article  CAS  Google Scholar 

  • De Lartigue G, de La Serre CB, Raybould HE (2011) Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiol Behav 105:100–105

    Article  CAS  Google Scholar 

  • Desbonnet L et al (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170:1179–1188

    Article  CAS  Google Scholar 

  • Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052

    Article  Google Scholar 

  • Donohue DC, Deighton M, Ahokas JT, Salminen S (1993) In: Salminen S, von Wright A (eds) Toxicity of lactic acid bacteria. Marcel Dekker, New York, pp 307–313

    Google Scholar 

  • Duerkop BA, Vaishnava S, Hooper LV (2009) Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31:368–376

    Article  CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  Google Scholar 

  • Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D et al (2012) Bifidobacterial surface-exopolysaccharide facilitates commensal–host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci U S A 109:2108–2113

    Article  CAS  Google Scholar 

  • Felis G, Dellaglio F (2007) Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intest Microbiol 8:44–61

    CAS  Google Scholar 

  • Foligné B, Dewulf J, Breton J, Claisse O, Lonvaud-Funel A, Pot B (2010) Probiotic properties of non-conventional lactic acid bacteria: immunomodulation by Oenococcus oeni. Int J Food Microbiol 15:136–145

    Article  Google Scholar 

  • Forsythe P, Bienenstock J (2010) Immunomodulation by commensal and probiotic bacteria. Immunol Invest 39:429–448

    Article  CAS  Google Scholar 

  • Forsythe P, Kunze WA (2012) Voices from within: gut microbes and the CNS. Cell Mol Life Sci 26. doi:10.1007/s00018-012-1028-z

    Google Scholar 

  • Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J (2010) Mood and gut feelings. Brain Behav Immun 24:9–16

    Article  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    Article  CAS  Google Scholar 

  • Gill HS (2003) Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Pract Res Clin Gastroenterol 17:755–773

    Article  CAS  Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  Google Scholar 

  • Goehler LE, Park SM, Opitz N, Lyte M, Gaykema RP (2008) Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav Immun 22:354–366

    Article  CAS  Google Scholar 

  • Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2:94

    Article  Google Scholar 

  • Guarner F, Malagelada J (2003) Gut flora in health and disease. Lancet 361:512–519

    Article  Google Scholar 

  • Kailasapathy K, Chin J (2000) Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacteria spp. Immunol Cell Biol 78:80–88

    Article  CAS  Google Scholar 

  • Kamiya T, Wang L, Forsythe P, Goettsche G, Mao Y, Wang Y et al (2006) Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats. Gut 55:191–196

    Article  CAS  Google Scholar 

  • Kullisaar T, Zilmer M, Mikelsaar M, VihalemmT AH, Kairane C, Kilk A (2002) Two antioxidative Lactobacilli strains as promising probiotics. Int J Food Microbiol 72:215–224

    Article  CAS  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  CAS  Google Scholar 

  • Logan AC, Katzman M (2005) Major depressive disorder: probiotics may be an adjuvant therapy. Med Hypotheses 64:533–538

    Article  Google Scholar 

  • Lyte M (2011) Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays 33:574–581

    Article  CAS  Google Scholar 

  • MacFabe DF, Cain NE, Boon F, Ossenkopp KP, Cain DP (2011) Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behav Brain Res 217:47–54

    Article  CAS  Google Scholar 

  • Marteau P, Rambaud JC (1993) Potential for using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol Rev 12:207–220

    Article  CAS  Google Scholar 

  • Matur E, Eraslan E (2012) In: Brzozowski T (ed) New advances in the basic and clinical gastroenterology. InTech, Rijeka

    Google Scholar 

  • Neufeld KM, Kang N, Bienenstock J, Foster JA (2011) 2011. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23:255–264, e119

    Article  CAS  Google Scholar 

  • Novak J, Katz JA (2006) Probiotics and prebiotics for gastrointestinal infections. Curr Infect Dis Rep 8:103–109

    Article  Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    Article  Google Scholar 

  • O’Hara AM, Shanahan F (2007) Gut microbiota: mining for therapeutic potential. Clin Gastroenterol Hepatol 5:274–284

    Article  Google Scholar 

  • O’Toole PW, Cooney JC (2008) Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscip Perspect Infect Dis 2008:175–285

    Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  Google Scholar 

  • Rao S, Srinivasjois R, Patole S (2009) Prebiotic supplementation in full-term neonates: a systematic review of randomized controlled trials. Arch Pediatr Adolesc Med 163:755–764

    Article  Google Scholar 

  • Sanders ME (1993) Summary of conclusions from a consensus panel of experts on health attributes of lactic acid cultures: significance to fluid milk products containing cultures. J Dairy Sci 76:1819–1828

    Article  CAS  Google Scholar 

  • Sartor RB (2006) Microbial and dietary factors in the pathogenesis of chronic mediated intestinal inflammation. Adv Exp Med Biol 579:35–54

    Article  CAS  Google Scholar 

  • Silk DB, Davis A, Vulevic J, Tzortzis G, Gibson GR (2009) Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther 29:508–518

    Article  CAS  Google Scholar 

  • Sourabh A, Kanwar SS, Sharma OP (2011) Screening of indigenous yeast isolates obtained from traditional fermented foods of Western Himalayas for probiotic attributes. J Yeast Fungal Res 2:117–126

    CAS  Google Scholar 

  • Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6:318–328

    Article  CAS  Google Scholar 

  • Sudo N, Chida Y, Aiba Y, Sonoda J, OyamaN YXN et al (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558:263–275

    Article  CAS  Google Scholar 

  • Tanida M, Yamano T, Maeda K, Okumura N, Fukushima Y et al (2005) Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Neurosci Lett 389:109–114

    Article  CAS  Google Scholar 

  • Thomas RH, Meeking MM, Mepham JR, Tichenoff L, Possmayer F, Liu S, MacFabe DF (2012) The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders. J Neuroinflammation 9:153

    Article  CAS  Google Scholar 

  • Todorov SD, LeBlanc JG, Bernadette DGMF (2012) Evaluation of the probiotic potential and effect of encapsulation on survival for Lactobacillus plantarum ST16Pa isolated from papaya. World J Microbiol Biotechnol 28:973–984

    Article  CAS  Google Scholar 

  • Vitkovic L, Konsman JP, Bockaert J, Dantzer R, Homburger V et al (2000) Cytokine signals propagate through the brain. Mol Psychiatry 5:604–615

    Article  CAS  Google Scholar 

  • Wagar LE, Champagne CP, Buckley ND, Raymond Y, Green-Johnson JM (2009) Immunomodulatory properties of fermented soy and dairy milks prepared with lactic acid bacteria. J Food Sci 74:23–30

    Article  Google Scholar 

  • Walia S, Keshani, Sood S, Kanwar SS (2014) Exhibition of DNA-bioprotective activity by microflora of traditional fermented foods of North-Western Himalayas. Food Res Int 55:176–180

    Article  CAS  Google Scholar 

  • Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH et al (2003) Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421:384–388

    Article  CAS  Google Scholar 

  • Weiss KA, Christiaansen AF, Fulton RB, Meyerholz DK, Varga SM (2011) Multiple CD4+ T cell subsets produce immunomodulatory IL-10 during respiratory syncitial virus infection. J Immunol 187:3145–3154

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarabjit Singh Kanwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kanwar, S.S., Walia, S., Sharma, S. (2016). Impact of Probiotics and Gut Microbiota on Host Behavior. In: Garg, N., Abdel-Aziz, S., Aeron, A. (eds) Microbes in Food and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-25277-3_2

Download citation

Publish with us

Policies and ethics