Skip to main content

Multimodal Imaging in Glioma Surgery

Abstract

In this chapter, the authors present current possibilities of intraoperative visualization of brain gliomas. These tumors are often macroscopically similar to the normal brain but typically well visualized by magnetic resonance imaging (MRI). Therefore, neuronavigation based on preoperative MRI is often used in order to localize glioma tissue. However, the accuracy of neuronavigation is limited due to the brain shift, and after some tumor debulking, it becomes unreliable. Intraoperative imaging techniques – intraoperative MRI and intraoperative ultrasound – represent a solution to this problem as these modalities enable an update of the neuronavigation data during the surgical procedure. In malignant gliomas, utilization of fluorescent agents is another possibility of intraoperative tumor tissue visualization. Benefits and pitfalls of aforementioned methods are discussed, with special emphasis on intraoperative ultrasound.

Keywords

  • Glioma Tissue
  • Resection Cavity
  • Brain Glioma
  • Direct Electrical Stimulation
  • Glioma Surgery

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25268-1_8
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-25268-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6
Fig. 8.7
Fig. 8.8
Fig. 8.9
Fig. 8.10
Fig. 8.11
Fig. 8.12

References

  1. Jakola AS et al (2012) Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA 308(18):1881–1888

    CAS  CrossRef  PubMed  Google Scholar 

  2. Eyupoglu IY, Buchfelder M, Savaskan NE (2013) Surgical resection of malignant gliomas-role in optimizing patient outcome. Nat Rev Neurol 9(3):141–151

    CrossRef  PubMed  Google Scholar 

  3. Perry A (2003) Pathology of low-grade gliomas: an update of emerging concepts. Neuro Oncol 5(3):168–178

    CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Wirtz CR et al (2000) The benefit of neuronavigation for neurosurgery analyzed by its impact on glioblastoma surgery. Neurol Res 22(4):354–360

    CAS  PubMed  Google Scholar 

  5. Kurimoto M et al (2004) Impact of neuronavigation and image-guided extensive resection for adult patients with supratentorial malignant astrocytomas: a single-institution retrospective study. Minim Invasive Neurosurg 47(5):278–283

    CAS  CrossRef  PubMed  Google Scholar 

  6. Bello L et al (2007) Intraoperative subcortical language tract mapping guides surgical removal of gliomas involving speech areas. Neurosurgery 60(1):67–80; discussion 80–82

    CrossRef  PubMed  Google Scholar 

  7. Mert A et al (2015) Introduction of a standardized multimodality image protocol for navigation-guided surgery of suspected low-grade gliomas. Neurosurg Focus 38(1):E4

    CrossRef  PubMed  Google Scholar 

  8. Leuthardt EC et al (2002) Frameless stereotaxy without rigid pin fixation during awake craniotomies. Stereotact Funct Neurosurg 79(3–4):256–261

    PubMed  Google Scholar 

  9. Pinsker MO, Nabavi A, Mehdorn HM (2007) Neuronavigation and resection of lesions located in eloquent brain areas under local anesthesia and neuropsychological-neurophysiological monitoring. Minim Invasive Neurosurg 50(5):281–284

    CAS  CrossRef  PubMed  Google Scholar 

  10. Chang EF et al (2008) Preoperative prognostic classification system for hemispheric low-grade gliomas in adults. J Neurosurg 109(5):817–824

    CrossRef  PubMed  Google Scholar 

  11. Willems PW et al (2006) Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J Neurosurg 104(3):360–368

    CrossRef  PubMed  Google Scholar 

  12. Nimsky C (2011) Intraoperative MRI in glioma surgery: proof of benefit? Lancet Oncol 12(11):982–983

    CrossRef  PubMed  Google Scholar 

  13. Knauth M et al (1999) Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas. AJNR Am J Neuroradiol 20(9):1642–1646

    CAS  PubMed  Google Scholar 

  14. Wirtz CR et al (2000) Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 46(5):1112–1120; discussion 1120–1122

    CAS  CrossRef  PubMed  Google Scholar 

  15. Bohinski RJ et al (2001) Glioma resection in a shared-resource magnetic resonance operating room after optimal image-guided frameless stereotactic resection. Neurosurgery 48(4):731–742; discussion 742–744

    CAS  PubMed  Google Scholar 

  16. Nimsky C et al (2003) Glioma surgery evaluated by intraoperative low-field magnetic resonance imaging. Acta Neurochir Suppl 85:55–63

    CAS  CrossRef  PubMed  Google Scholar 

  17. Hirschberg H et al (2005) Impact of intraoperative MRI on the surgical results for high-grade gliomas. Minim Invasive Neurosurg 48(2):77–84

    CAS  CrossRef  PubMed  Google Scholar 

  18. Schneider JP et al (2005) Intraoperative MRI to guide the resection of primary supratentorial glioblastoma multiforme--a quantitative radiological analysis. Neuroradiology 47(7):489–500

    CrossRef  PubMed  Google Scholar 

  19. Hatiboglu MA et al (2010) Utilization of intraoperative motor mapping in glioma surgery with high-field intraoperative magnetic resonance imaging. Stereotact Funct Neurosurg 88(6):345–352

    CrossRef  PubMed  Google Scholar 

  20. Pamir MN et al (2010) First intraoperative, shared-resource, ultrahigh-field 3-Tesla magnetic resonance imaging system and its application in low-grade glioma resection. J Neurosurg 112(1):57–69

    CrossRef  PubMed  Google Scholar 

  21. Senft C et al (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12(11):997–1003

    CrossRef  PubMed  Google Scholar 

  22. Kubben PL et al (2011) Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol 12(11):1062–1070

    CrossRef  PubMed  Google Scholar 

  23. Barone DG, Lawrie TA, Hart MG (2014) Image guided surgery for the resection of brain tumours. Cochrane Database Syst Rev 1:Cd009685

    PubMed  Google Scholar 

  24. Nimsky C et al (2005) Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 56(1):130–137; discussion 138

    PubMed  Google Scholar 

  25. Seifert V, Gasser T, Senft C (2011) Low field intraoperative MRI in glioma surgery. Acta Neurochir Suppl 109:35–41

    CrossRef  PubMed  Google Scholar 

  26. Bellut D et al (2010) Intraoperative magnetic resonance imaging-assisted transsphenoidal pituitary surgery in patients with acromegaly. Neurosurg Focus 29(4):E9

    CrossRef  PubMed  Google Scholar 

  27. Moiyadi A, Shetty P (2011) Objective assessment of utility of intraoperative ultrasound in resection of central nervous system tumors: a cost-effective tool for intraoperative navigation in neurosurgery. J Neurosci Rural Pract 2(1):4–11

    CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Nimsky C, Ganslandt O, Fahlbusch R (2006) Implementation of fiber tract navigation. Neurosurgery 58(4 Suppl 2):ONS-292–ONS-303; discussion ONS-303-ONS-304

    Google Scholar 

  29. Ostry S et al (2013) Is intraoperative diffusion tensor imaging at 3.0T comparable to subcortical corticospinal tract mapping? Neurosurgery 73(5):797–807; discussion 806–807

    CrossRef  PubMed  Google Scholar 

  30. Peruzzi P et al (2011) Intraoperative MRI (ioMRI) in the setting of awake craniotomies for supratentorial glioma resection. Acta Neurochir Suppl 109:43–48

    CrossRef  PubMed  Google Scholar 

  31. Rubin JM et al (1980) Intraoperative ultrasound examination of the brain. Radiology 137(3):831–832

    CAS  CrossRef  PubMed  Google Scholar 

  32. Sosna J et al (2005) Intraoperative sonography for neurosurgery. J Ultrasound Med 24(12):1671–1682

    PubMed  Google Scholar 

  33. Nimsky C, Carl B (2015) Intraoperative imaging. In: Golby AJ (ed) Image-guided neurosurgery. Elsevier, San Diego/Waltham/Oxford, pp 163–190

    CrossRef  Google Scholar 

  34. Unsgaard G et al (2002) Brain operations guided by real-time two-dimensional ultrasound: new possibilities as a result of improved image quality. Neurosurgery 51(2):402–411; discussion 411–412

    PubMed  Google Scholar 

  35. Unsgaard G et al (2006) Intra-operative 3D ultrasound in neurosurgery. Acta Neurochir (Wien) 148(3):235–253; discussion 253

    CAS  CrossRef  Google Scholar 

  36. Coburger J et al (2014) Navigated high frequency ultrasound: description of technique and clinical comparison with conventional intracranial ultrasound. World Neurosurg 82(3–4):366–375

    CrossRef  PubMed  Google Scholar 

  37. Coburger J et al (2015) Linear array ultrasound in low-grade glioma surgery: histology-based assessment of accuracy in comparison to conventional intraoperative ultrasound and intraoperative MRI. Acta Neurochir (Wien) 157(2):195–206

    CrossRef  Google Scholar 

  38. Unsgard G et al (2011) Intra-operative imaging with 3D ultrasound in neurosurgery. Acta Neurochir Suppl 109:181–186

    CrossRef  PubMed  Google Scholar 

  39. Unsgaard G et al (2005) Ability of navigated 3D ultrasound to delineate gliomas and metastases – comparison of image interpretations with histopathology. Acta Neurochir (Wien) 147(12):1259–1269; discussion 1269

    CAS  CrossRef  Google Scholar 

  40. Steno A et al (2012) Navigated three-dimensional intraoperative ultrasound-guided awake resection of low-grade glioma partially infiltrating optic radiation. Acta Neurochir (Wien) 154(7):1255–1262

    CrossRef  Google Scholar 

  41. Moiyadi AV et al (2013) Usefulness of three-dimensional navigable intraoperative ultrasound in resection of brain tumors with a special emphasis on malignant gliomas. Acta Neurochir (Wien) 155(12):2217–2225

    CrossRef  Google Scholar 

  42. Solheim O et al (2010) Ultrasound-guided operations in unselected high-grade gliomas – overall results, impact of image quality and patient selection. Acta Neurochir (Wien) 152(11):1873–1886

    CrossRef  Google Scholar 

  43. Petridis AK et al (2015) The value of intraoperative sonography in low grade glioma surgery. Clin Neurol Neurosurg 131:64–68

    CrossRef  PubMed  Google Scholar 

  44. Hentschel SJ, Lang FF (2005) Surgical resection of intrinsic insular tumors. Neurosurgery 57(1 Suppl):176–183; discussion 176–183

    PubMed  Google Scholar 

  45. Gerganov VM et al (2011) Two-dimensional high-end ultrasound imaging compared to intraoperative MRI during resection of low-grade gliomas. J Clin Neurosci 18(5):669–673

    CrossRef  PubMed  Google Scholar 

  46. Selbekk T et al (2013) Ultrasound imaging in neurosurgery: approaches to minimize surgically induced image artefacts for improved resection control. Acta Neurochir (Wien) 155(6):973–980

    CrossRef  Google Scholar 

  47. Jakola AS et al (2014) Animal study assessing safety of an acoustic coupling fluid that holds the potential to avoid surgically induced artifacts in 3D ultrasound guided operations. BMC Med Imaging 14:11

    CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Steno A, Matejcik V, Steno J (2015) Intraoperative ultrasound in low-grade glioma surgery. Clin Neurol Neurosurg 135:96–99

    CrossRef  PubMed  Google Scholar 

  49. Steno A et al (2014) Direct electrical stimulation of the optic radiation in patients with covered eyes. Neurosurg Rev 37(3):527–533; discussion 533

    CrossRef  PubMed  Google Scholar 

  50. Bozinov O et al (2011) Advantages and limitations of intraoperative 3D ultrasound in neurosurgery. Technical note. Acta Neurochir Suppl 109:191–196

    CrossRef  PubMed  Google Scholar 

  51. Unsgaard G et al (2002) Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection. Neurosurgery 50(4):804–812; discussion 812

    CrossRef  PubMed  Google Scholar 

  52. Duffau H et al (2008) Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg 109(3):461–471

    CrossRef  PubMed  Google Scholar 

  53. Bai HM et al (2011) Three core techniques in surgery of neuroepithelial tumors in eloquent areas: awake anaesthesia, intraoperative direct electrical stimulation and ultrasonography. Chin Med J (Engl) 124(19):3035–3041

    Google Scholar 

  54. Kim SS et al (2009) Awake craniotomy for brain tumors near eloquent cortex: correlation of intraoperative cortical mapping with neurological outcomes in 309 consecutive patients. Neurosurgery 64(5):836–845; discussion 345–346

    CrossRef  PubMed  Google Scholar 

  55. Chacko AG et al (2013) Awake craniotomy and electrophysiological mapping for eloquent area tumours. Clin Neurol Neurosurg 115(3):329–334

    CrossRef  PubMed  Google Scholar 

  56. Zhang Z et al (2008) Surgical strategies for glioma involving language areas. Chin Med J (Engl) 121(18):1800–1805

    Google Scholar 

  57. Prada F et al (2014) Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery 74(5):542–552; discussion 552

    CrossRef  PubMed  Google Scholar 

  58. Hata N et al (1997) Development of a frameless and armless stereotactic neuronavigation system with ultrasonographic registration. Neurosurgery 41(3):608–613; discussion 613–614

    CAS  PubMed  Google Scholar 

  59. Koivukangas J et al (1993) Ultrasound-controlled neuronavigator-guided brain surgery. J Neurosurg 79(1):36–42

    CAS  CrossRef  PubMed  Google Scholar 

  60. Trobaugh JW et al (1994) Frameless stereotactic ultrasonography: method and applications. Comput Med Imaging Graph 18(4):235–246

    CAS  CrossRef  PubMed  Google Scholar 

  61. Gronningsaeter A et al (2000) SonoWand, an ultrasound-based neuronavigation system. Neurosurgery 47(6):1373–1379; discussion 1379–1380

    CAS  CrossRef  PubMed  Google Scholar 

  62. Lindseth F et al (2003) Multimodal image fusion in ultrasound-based neuronavigation: improving overview and interpretation by integrating preoperative MRI with intraoperative 3D ultrasound. Comput Aided Surg 8(2):49–69

    CrossRef  PubMed  Google Scholar 

  63. Skirboll SS et al (1996) Functional cortex and subcortical white matter located within gliomas. Neurosurgery 38(4):678–684; discussion 684–685

    CAS  CrossRef  PubMed  Google Scholar 

  64. Schiffbauer H et al (2001) Functional activity within brain tumors: a magnetic source imaging study. Neurosurgery 49(6):1313–1320; discussion 1320–1321

    CAS  CrossRef  PubMed  Google Scholar 

  65. Leclercq D et al (2010) Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg 112(3):503–511

    CrossRef  PubMed  Google Scholar 

  66. Giussani C et al (2010) Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery 66(1):113–120

    CrossRef  PubMed  Google Scholar 

  67. Wilden JA et al (2013) Strategies to maximize resection of complex, or high surgical risk, low-grade gliomas. Neurosurg Focus 34(2):E5

    CrossRef  PubMed  Google Scholar 

  68. Mandelli ML et al (2014) Quantifying accuracy and precision of diffusion MR tractography of the corticospinal tract in brain tumors. J Neurosurg 121(2):349–358

    CrossRef  PubMed  Google Scholar 

  69. Sanai N, Chang S, Berger MS (2011) Low-grade gliomas in adults. J Neurosurg 115(5):948–965

    CrossRef  PubMed  Google Scholar 

  70. Fontaine D, Capelle L, Duffau H (2002) Somatotopy of the supplementary motor area: evidence from correlation of the extent of surgical resection with the clinical patterns of deficit. Neurosurgery 50(2):297–303; discussion 303–305

    PubMed  Google Scholar 

  71. Nguyen HS et al (2011) A method to map the visual cortex during an awake craniotomy. J Neurosurg 114(4):922–926

    CrossRef  PubMed  Google Scholar 

  72. Gras-Combe G et al (2012) Intraoperative subcortical electrical mapping of optic radiations in awake surgery for glioma involving visual pathways. J Neurosurg 117(3):466–473

    CrossRef  PubMed  Google Scholar 

  73. Berger MS, Hadjipanayis CG (2007) Surgery of intrinsic cerebral tumors. Neurosurgery 61(1 Suppl):279–304; discussion 304–305

    PubMed  Google Scholar 

  74. Maldaun MV et al (2014) Awake craniotomy for gliomas in a high-field intraoperative magnetic resonance imaging suite: analysis of 42 cases. J Neurosurg 121(4):810–817

    CrossRef  PubMed  Google Scholar 

  75. Goebel S et al (2010) Patient perception of combined awake brain tumor surgery and intraoperative 1.5-T magnetic resonance imaging: the Kiel experience. Neurosurgery 67(3):594–600; discussion 600

    CrossRef  PubMed  Google Scholar 

  76. Leuthardt EC et al (2011) Use of movable high-field-strength intraoperative magnetic resonance imaging with awake craniotomies for resection of gliomas: preliminary experience. Neurosurgery 69(1):194–205; discussion 205–206

    CrossRef  PubMed  Google Scholar 

  77. Lu J et al (2013) Awake language mapping and 3-Tesla intraoperative MRI-guided volumetric resection for gliomas in language areas. J Clin Neurosci 20(9):1280–1287

    CrossRef  PubMed  Google Scholar 

  78. Parney IF et al (2010) Awake craniotomy, electrophysiologic mapping, and tumor resection with high-field intraoperative MRI. World Neurosurg 73(5):547–551

    CrossRef  PubMed  Google Scholar 

  79. Tuominen J et al (2013) Awake craniotomy may further improve neurological outcome of intraoperative MRI-guided brain tumor surgery. Acta Neurochir (Wien) 155(10):1805–1812

    CrossRef  Google Scholar 

  80. Takrouri MS et al (2010) Conscious sedation for awake craniotomy in intraoperative magnetic resonance imaging operating theater. Anesth Essays Res 4(1):33–37

    CrossRef  PubMed  PubMed Central  Google Scholar 

  81. Nabavi A et al (2009) Awake craniotomy and intraoperative magnetic resonance imaging: patient selection, preparation, and technique. Top Magn Reson Imaging 19(4):191–196

    CrossRef  PubMed  Google Scholar 

  82. Nossek E et al (2011) Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article. J Neurosurg 114(3):738–746

    CrossRef  PubMed  Google Scholar 

  83. Duffau H et al (2003) Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg 98(4):764–778

    CrossRef  PubMed  Google Scholar 

  84. Garavaglia MM et al (2014) Anesthetic approach to high-risk patients and prolonged awake craniotomy using dexmedetomidine and scalp block. J Neurosurg Anesthesiol 26(3):226–233

    CrossRef  PubMed  Google Scholar 

  85. Duffau H (2013) Surgery for diffuse Low-grade gliomas (DLGG) functional considerations. In: Duffau H (ed) Diffuse low-grade gliomas in adults. Springer, London, pp 375–399

    CrossRef  Google Scholar 

  86. Koc K et al (2008) Fluorescein sodium-guided surgery in glioblastoma multiforme: a prospective evaluation. Br J Neurosurg 22(1):99–103

    CAS  CrossRef  PubMed  Google Scholar 

  87. Shinoda J et al (2003) Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium. Technical note. J Neurosurg 99(3):597–603

    CrossRef  PubMed  Google Scholar 

  88. Stummer W et al (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42(3):518–525; discussion 525–526

    CAS  CrossRef  PubMed  Google Scholar 

  89. Stummer W et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401

    CAS  CrossRef  PubMed  Google Scholar 

  90. Feigl GC et al (2010) Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. J Neurosurg 113(2):352–357

    CrossRef  PubMed  Google Scholar 

  91. Eyupoglu IY et al (2012) Improving the extent of malignant glioma resection by dual intraoperative visualization approach. PLoS One 7(9):e44885

    CrossRef  PubMed  PubMed Central  Google Scholar 

  92. Hefti M et al (2008) 5-aminolevulinic acid induced protoporphyrin IX fluorescence in high-grade glioma surgery: a one-year experience at a single institution. Swiss Med Wkly 138(11–12):180–185

    CAS  PubMed  Google Scholar 

  93. Tsugu A et al (2011) Impact of the combination of 5-aminolevulinic acid-induced fluorescence with intraoperative magnetic resonance imaging-guided surgery for glioma. World Neurosurg 76(1–2):120–127

    CrossRef  PubMed  Google Scholar 

  94. Moiyadi A, Shetty P (2014) Navigable intraoperative ultrasound and fluorescence-guided resections are complementary in resection control of malignant gliomas: one size does not fit all. J Neurol Surg A Cent Eur Neurosurg 75(6):434–441

    CrossRef  PubMed  Google Scholar 

  95. Beiko J et al (2014) IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncol 16(1):81–91

    CAS  CrossRef  PubMed  Google Scholar 

  96. Prada F et al (2014) Intraoperative cerebral glioma characterization with contrast enhanced ultrasound. Biomed Res Int 2014:1–9

    CrossRef  Google Scholar 

  97. Widhalm G et al (2010) 5-Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement. Cancer 116(6):1545–1552

    CAS  CrossRef  PubMed  Google Scholar 

  98. Steno A et al (2012) Detection of anaplastic foci within infiltrative gliomas with nonsignificant contrast enhancement using 5-aminolevulic acid – a report of five cases. Cesk Slov Neurol 75(108):227–232

    Google Scholar 

  99. Widhalm G et al (2013) 5-Aminolevulinic acid induced fluorescence is a powerful intraoperative marker for precise histopathological grading of gliomas with non-significant contrast-enhancement. PLoS One 8(10):e76988

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Šteňo MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Šteňo, A., Giussani, C., Riva, M. (2016). Multimodal Imaging in Glioma Surgery. In: Prada, F., Solbiati, L., Martegani, A., DiMeco, F. (eds) Intraoperative Ultrasound (IOUS) in Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-25268-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25268-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25266-7

  • Online ISBN: 978-3-319-25268-1

  • eBook Packages: MedicineMedicine (R0)