Skip to main content

Intraoperative Findings in Spinal Lesions

Abstract

Ultrasonographic appearance of spinal tumors has been described in few studies until now, and the role of intraoperative ultrasound is not yet well standardized in spinal tumor surgery.

To evaluate the spinal cord, probes with very high frequency (10 MHz or greater) can be used with outstanding spatial and temporal resolution. Before tumor removal, the lesion is identified, measured on axial and sagittal axes and defined as hyperechoic, isoechoic, or hypoechoic. Other characteristics of the lesions are considered: presence of calcifications, cystic/necrotic areas, diffuse or circumscribed appearance, and the relationships with the surrounding anatomical structures. Intraoperative ultrasonographic findings of different spinal tumors, according to histotypes and also to position, with respective pictorial essays are here presented. Intraoperative ultrasound is a valuable tool to detect spinal lesions, evaluate the surgical approach, and plan the surgical strategy, considering the position and relationships of the lesion with bony, neural, and vascular structures.

Keywords

  • Spinal Cord
  • Dural Opening
  • Spinal Tumor
  • Spinal Cord Tumor
  • Bone Removal

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25268-1_6
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-25268-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7
Fig. 6.8
Fig. 6.9

References

  1. Avila EK, Elder JB, Singh P, Chen X, Bilsky MH (2013) Intraoperative neurophysiologic monitoring and neurologic outcomes in patients with epidural spine tumors. Clin Neurol Neurosurg 115:2147–2152. doi:10.1016/j.clineuro.2013.08.008

    CrossRef  PubMed  Google Scholar 

  2. Bozinov O, Burkhardt JK, Fischer CM, Kockro RA, Bernays RL, Bertalanffy H (2011) Advantages and limitations of intraoperative 3D ultrasound in neurosurgery. Technical note. Acta Neurochir Suppl 109:191–196. doi:10.1007/978-3-211-99651-5_30

    CrossRef  PubMed  Google Scholar 

  3. Bozinov O, Burkhardt JK, Woernle CM, Hagel V, Ulrich NH, Krayenbühl N, Bertalanffy H (2012) Intra-operative high frequency ultrasound improves surgery of intramedullary cavernous malformations. Neurosurg Rev 35:269– 275 (discussion 275)

    Google Scholar 

  4. Chadduck WM, Flanigan S (1985) Intraoperative ultrasound for spinal lesions. Neurosurgery 16:477–483

    CAS  CrossRef  PubMed  Google Scholar 

  5. Cooper PR, Epstein F (1985) Radical resection of intramedullary spinal cord tumors in adults. Recent experience in 29 patients. J Neurosurg 63(4):492–499. doi:10.3171/jns.1985.63.4.0492

    CAS  CrossRef  PubMed  Google Scholar 

  6. Costa P, Peretta P, Faccani G (2013) Relevance of intraoperative D wave in spine and spinal cord surgeries. Eur Spine J 22:840–848. doi:10.1007/s00586-012-2576-5

    CrossRef  PubMed  Google Scholar 

  7. Degreif J, Wenda K (1998) Ultrasound-guided spinal fracture repositioning. Surg Endosc 12(2):164–169

    CAS  CrossRef  PubMed  Google Scholar 

  8. Dohrmann GJ, Rubin JM (1988) Cervical spondylosis and syringomyelia: suboptimal results, incomplete treatment, and the role of intraoperative ultrasound. Clin Neurosurg 34:378–388

    CAS  PubMed  Google Scholar 

  9. Duong LM, McCarthy BJ, McLendon RE, Dolecek TA, Kruchko C, Douglas LL, Ajani UA (2012) Descriptive epidemiology of malignant and nonmalignant primary spinal cord, spinal meninges, and cauda equina tumors, United States, 2004–2007. Cancer 118:4220–4227. doi:10.1002/cncr.27390

    CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Epstein FJ, Farmer JP, Schneider SJ (1991) Intraoperative ultrasonography: an important surgical adjunct for intramedullary tumors. J Neurosurg 74:729–733. doi:10.3171/jns.1991.74.5.0729

    CAS  CrossRef  PubMed  Google Scholar 

  11. Friedman JA, Atkinson JL, Lane JI (2000) Migration of an intraspinal schwannoma documented by intraoperative ultrasound: case report. Surg Neurol 54:455–457

    CAS  CrossRef  PubMed  Google Scholar 

  12. Friedman JA, Wetjen NM, Atkinson JL (2003) Utility of intraoperative ultrasound for tumors of the cauda equina. Spine (Phila Pa 1976) 28:288–290; discussion 291. doi:10.1097/01.BRS.0000042271.75392.E4

    Google Scholar 

  13. Glasier CM, Chadduck WM, Burrows PE (1986) Diagnosis of diastematomyelia with high-resolution spinal ultrasound. Childs Nerv Syst 2(5):255–257

    CAS  PubMed  Google Scholar 

  14. Haberland N, Ebmeier K, Hliscs R, Grnewald JP, Silbermann J, Steenbeck J, Nowak H, Kalff R (2000) Neuronavigation in surgery of intracranial and spinal tumors. J Cancer Res Clin Oncol 126:529–541

    CAS  CrossRef  PubMed  Google Scholar 

  15. Hammoud MA, Ligon BL, elSouki R, Shi WM, Schomer DF, Sawaya R (1996) Use of intraoperative ultrasound for localizing tumors and determining the extent of resection: a comparative study with magnetic resonance imaging. J Neurosurg 84:737–741. doi:10.3171/jns.1996.84.5.0737

    CAS  CrossRef  PubMed  Google Scholar 

  16. Henegar MM, Vollmer DG, Silbergeld DL (1996) Intraoperative transligamentous ultrasound in the evaluation of thoracic intraspinal disease. Technique. Spine (Phila Pa 1976) 21:124–127

    CAS  CrossRef  Google Scholar 

  17. Jenkinson MD, Simpson C, Nicholas RS, Miles J, Findlay GF, Pigott TJ (2006) Outcome predictors and complications in the management of intradural spinal tumours. Eur Spine J 15:203–210. doi:10.1007/s00586-005-0902-x

    CAS  CrossRef  PubMed  Google Scholar 

  18. Jokich PM, Rubin JM, Dohrmann GJ (1984) Intraoperative ultrasonic evaluation of spinal cord motion. J Neurosurg 60:707–711. doi:10.3171/jns.1984.60.4.0707

    CAS  CrossRef  PubMed  Google Scholar 

  19. Kane RA, Kruskal JB (2007) Intraoperative ultrasonography of the brain and spine. Ultrasound Q 23:23–39. doi:10.1097/01.ruq.0000263840.92560.72

    CrossRef  PubMed  Google Scholar 

  20. Koivukangas J, Tervonen O (1989) Intraoperative ultrasound imaging in lumbar disc herniation surgery. Acta Neurochir (Wien) 98:47–54

    CAS  CrossRef  Google Scholar 

  21. Koivukangas J, Tervonen O, Alasaarela E, Ylitalo J, Nyström S (1989) Completely computer-focused ultrasound imaging. First clinical imaging results. J Ultrasound Med 8:675–683

    CAS  PubMed  Google Scholar 

  22. Kolstad F, Rygh OM, Selbekk T, Unsgaard G, Nygaard OP (2006) Three-dimensional ultrasonography navigation in spinal cord tumor surgery. Technical note. J Neurosurg Spine 5:264–270. doi:10.3171/spi.2006.5.3.264, 1055/s-2007-1003202

    CrossRef  PubMed  Google Scholar 

  23. Lerch K, Völk M, Heers G, Baer W, Nerlich M (2002) Ultrasound-guided decompression of the spinal canal in traumatic stenosis. Ultrasound Med Biol 28(1):27–32

    Google Scholar 

  24. Maiuri F, Iaconetta G, de Divitiis O (1997) The role of intraoperative sonography in reducing invasiveness during surgery for spinal tumors. Minim Invasive Neurosurg 40:8–12. doi:10.1055/s-2008-1053405

    CAS  CrossRef  PubMed  Google Scholar 

  25. Maiuri F, Iaconetta G, Gallicchio B, Stella L (2000) Intraoperative sonography for spinal tumors. Correlations with MR findings and surgery. J Neurosurg Sci 44:115–122

    CAS  PubMed  Google Scholar 

  26. Nagelhus Hernes TA, Lindseth F, Selbekk T, Wollf A, Solberg OV, Harg E, Rygh OM, Tangen GA, Rasmussen I, Augdal S, Couweleers F, Unsgaard G (2006) Computer-assisted 3D ultrasound-guided neurosurgery: technological contributions, including multimodal registration and advanced display, demonstrating future perspectives. Int J Med Robot 2:45–59. doi:10.1002/rcs.68

    CrossRef  PubMed  Google Scholar 

  27. Onik GM (2000) Percutaneous diskectomy in the treatment of herniated lumbar disks. Neuroimaging Clin N Am 10(3):597–607

    CAS  PubMed  Google Scholar 

  28. Platt JF, Rubin JM, Chandler WF, Bowerman RA, DiPietro MA (1988) Intraoperative spinal sonography in the evaluation of intramedullary tumors. J Ultrasound Med 7:317–325

    CAS  PubMed  Google Scholar 

  29. Prada F, Del Bene M, Mattei L, Casali C, Filippini A, Legnani F, Mangraviti A, Saladino A, Perin A, Richetta C, Vetrano I, Moiraghi A, Saini M, DiMeco F (2014) Fusion imaging for intra-operative ultrasound-based navigation in neurosurgery. J Ultrasound 17(3):243–251. doi:10.1007/s40477-014-0111-8

    CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Prada F, Del Bene M, Mattei L, Lodigiani L, DeBeni S, Kolev V, Vetrano I, Solbiati L, Sakas G, DiMeco F (2014) Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery. Ultraschall Med. doi:10.1055/s-0034-1385347

    PubMed  Google Scholar 

  31. Prada F, Perin A, Martegani A, Aiani L, Solbiati L, Lamperti M, Casali C, Legnani F, Mattei L, Saladino A, Saini M, DiMeco F (2014c) Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery 74(5):542–552; discussion 552. doi:10.1227/NEU.0000000000000301

    Google Scholar 

  32. Prada F, Vetrano IG, Filippini A, Del Bene M, Perin A, Casali C, Legnani F, Saini M, DiMeco F (2014) Intraoperative ultrasound in spinal tumor surgery. J Ultrasound 17:195–202. doi:10.1007/s40477-014-0102-9

    CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Rasmussen IA, Lindseth F, Rygh OM, Berntsen EM, Selbekk T, Xu J, Nagelhus Hernes TA, Harg E, Håberg A, Unsgaard G (2007) Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir (Wien) 149:365–378. doi:10.1007/s00701-006-1110-0

    CrossRef  Google Scholar 

  34. Regelsberger J, Fritzsche E, Langer N, Westphal M (2005) Intraoperative sonography of intra- and extramedullary tumors. Ultrasound Med Biol 31:593–598. doi:10.1016/j.ultrasmedbio.2005.01.016

    CrossRef  PubMed  Google Scholar 

  35. Reid MH (1978) Ultrasonic visualization of a cervical cord cystic astrocytoma. AJR Am J Roentgenol 131:907–908. doi:10.2214/ajr.131.5.907

    CAS  CrossRef  PubMed  Google Scholar 

  36. Rhodes DW, Bishop PA (1997) A review of diagnostic ultrasound of the spine and soft tissue. J Manipulative Physiol Ther 20:267–273

    CAS  PubMed  Google Scholar 

  37. Rubin JM, Chandler WF (1987) The use of ultrasound during spinal cord surgery. World J Surg 11:570–578

    CAS  CrossRef  PubMed  Google Scholar 

  38. Sandalcioglu IE, Gasser T, Asgari S, Lazorisak A, Engelhorn T, Egelhof T, Stolke D, Wiedemayer H (2005) Functional outcome after surgical treatment of intramedullary spinal cord tumors: experience with 78 patients. Spinal Cord 43:34–41. doi:10.1038/sj.sc.3101668

    CAS  CrossRef  PubMed  Google Scholar 

  39. Schellinger KA, Propp JM, Villano JL, McCarthy BJ (2008) Descriptive epidemiology of primary spinal cord tumors. J Neurooncol 87:173–179. doi:10.1007/s11060-007-9507-z

    CrossRef  PubMed  Google Scholar 

  40. Selbekk T, Jakola AS, Solheim O, Johansen TF, Lindseth F, Reinertsen I, Unsgård G (2013) Ultrasound imaging in neurosurgery: approaches to minimize surgically induced image artefacts for improved resection control. Acta Neurochir (Wien) 155:973–980

    Google Scholar 

  41. Shamov T, Eftimov T, Kaprelyan A, Enchev Y (2013) Ultrasound-based neuronavigation and spinal cord tumour surgery – marriage of convenience or notified incompatibility? Turk Neurosurg 23:329–335. doi:10.5137/1019-5149.JTN.6639-12.2

    PubMed  Google Scholar 

  42. Theodotou BC, Powers SK (1986) Use of intraoperative ultrasound in decision making during spinal operations. Neurosurgery 19:205–211

    CAS  CrossRef  PubMed  Google Scholar 

  43. Traul DE, Shaffrey ME, Schiff D (2007) Part I: spinal-cord neoplasms-intradural neoplasms. Lancet Oncol 8:35–45. doi:10.1016/S1470-2045(06)71009-9

    CrossRef  PubMed  Google Scholar 

  44. Uff CE, Garcia L, Fromageau J, Dorward N, Bamber JC (2009) Real-time ultrasound elastography in neurosurgery. In, vol Proceedings of the IEEE International Ultrasonics Symposium. Proceedings of the IEEE International Ultrasonics Symposium. pp 467–470. doi:10.1109/ULTSYM.2009.0115

  45. Zhou H, Miller D, Schulte DM, Benes L, Bozinov O, Sure U, Bertalanffy H (2011) Intraoperative ultrasound assistance in treatment of intradural spinal tumours. Clin Neurol Neurosurg 113:531–537. doi:10.1016/j.clineuro.2011.03.006

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio G. Vetrano MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vetrano, I.G., Prada, F. (2016). Intraoperative Findings in Spinal Lesions. In: Prada, F., Solbiati, L., Martegani, A., DiMeco, F. (eds) Intraoperative Ultrasound (IOUS) in Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-25268-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25268-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25266-7

  • Online ISBN: 978-3-319-25268-1

  • eBook Packages: MedicineMedicine (R0)