Skip to main content

Intraoperative Findings in Brain Tumor Surgery


Intraoperative ultrasound has been used for brain tumor surgery since more than 30 years now. In glioma surgery, taking into account the latest advances in ultrasound technology and its integration in a neuronavigation system intraoperative ultrasound is absolutely competitive with more recent imaging or visualization tools like 5-aminolevulinic acid fluorescence and intraoperative MRI. Intraoperative ultrasound allows for precise tumor depiction and intraoperative orientation in various indications. The actual chapter provides information about typical indications for intraoperative ultrasound in brain tumor surgery. It provides a guide for typical transducers and describes the depiction of intracranial lesions in B-mode ultrasound. During the course of resection, intraoperative ultrasound is prone to artifacts. Thus, a description of the most typical artifacts in intracranial surgery and a practical guide how optimize image quality and to avoid artifacts is given in this chapter.


  • Array Transducer
  • Ultrasound Transducer
  • Linear Array Transducer
  • Resection Cavity
  • Brain Shift

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25268-1_5
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-25268-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9
Fig. 5.10
Fig. 5.11
Fig. 5.12
Fig. 5.13
Fig. 5.14
Fig. 5.15
Fig. 5.16
Fig. 5.17
Fig. 5.18


  1. Wells PNT (1977) Ultrasonics in medicine and biology. Phys Med Biol 22(4):629

    CAS  CrossRef  PubMed  Google Scholar 

  2. Chandler WF, Knake JE, McGillicuddy JE, Lillehei KO, Silver TM (1982) Intraoperative use of real-time ultrasonography in neurosurgery. J Neurosurg 57(2):157–163, Epub 1982/08/01. doi:10.3171/jns.1982.57.2.0157. PubMed

    CAS  CrossRef  PubMed  Google Scholar 

  3. Unsgaard G, Gronningsaeter A, Ommedal S, Nagelhus Hernes TA (2002) Brain operations guided by real-time two-dimensional ultrasound: new possibilities as a result of improved image quality. Neurosurgery 51(2):402–411; discussion 11–12. Epub 2002/08/17. PubMed

    PubMed  Google Scholar 

  4. Gronningsaeter A, Kleven A, Ommedal S, Aarseth TE, Lie T, Lindseth F et al (2000) SonoWand, an ultrasound-based neuronavigation system. Neurosurgery 47(6):1373–1379; discussion 9–80. PubMed

    CAS  CrossRef  PubMed  Google Scholar 

  5. Schlaier JR, Warnat J, Dorenbeck U, Proescholdt M, Schebesch KM, Brawanski A (2004) Image fusion of MR images and real-time ultrasonography: evaluation of fusion accuracy combining two commercial instruments, a neuronavigation system and a ultrasound system. Acta Neurochir 146(3):271–277. doi:10.1007/s00701-003-0155-6

    CAS  CrossRef  PubMed  Google Scholar 

  6. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62(4):753–764; discussion 264–266. Epub 2008/05/23. doi: 10.1227/ PubMed

    CrossRef  PubMed  Google Scholar 

  7. Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S et al (2008) Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 26(8):1338–1345, Epub 2008/03/08. doi:10.1200/jco.2007.13.9337. PubMed

    CrossRef  PubMed  Google Scholar 

  8. Solheim O, Selbekk T, Jakola A, Unsgård G (2010) Ultrasound-guided operations in unselected high-grade gliomas—overall results, impact of image quality and patient selection. Acta Neurochir 152(11):1873–1886. doi:10.1007/s00701-010-0731-5

    CrossRef  PubMed  Google Scholar 

  9. Gerganov VM, Samii A, Akbarian A, Stieglitz L, Samii M, Fahlbusch R (2009) Reliability of intraoperative high-resolution 2D ultrasound as an alternative to high-field strength MR imaging for tumor resection control: a prospective comparative study. J Neurosurg 111(3):512–519, Epub 2009/03/31. doi:10.3171/2009.2.JNS08535. PubMed

    CrossRef  PubMed  Google Scholar 

  10. Masuzawa H, Kanazawa I, Kamitani H, Sato J (1985) Intraoperative ultrasonography through a burr-hole. Acta Neurochir 77(1–2):41–45. doi:10.1007/BF01402304

    CAS  CrossRef  PubMed  Google Scholar 

  11. Bozinov O, Burkhardt JK (2012) Intra-operative computed-tomography-like real-time three-dimensional ultrasound in neurosurgery. World Neurosurg 78(1–2):5–7, Epub 2012/05/29. doi:10.1016/j.wneu.2012.05.025. PubMed

    CrossRef  PubMed  Google Scholar 

  12. Serra C, Stauffer A, Actor B, Burkhardt JK, Ulrich NH, Bernays RL et al (2012) Intraoperative high frequency ultrasound in intracerebral high-grade tumors. Ultraschall Med 33(7):E306–E312, Epub 2012/11/07. doi:10.1055/s-0032-1325369. PubMed

    CAS  CrossRef  PubMed  Google Scholar 

  13. Coburger J, Scheuerle A, Kapapa T, Engelke J, Thal DR, Wirtz CR et al (2015) Sensitivity and specificity of linear array intraoperative ultrasound in glioblastoma surgery: a comparative study with high field intraoperative MRI and conventional sector array ultrasound. Neurosurg Rev 38:499–509, Epub 2015/04/10. doi:10.1007/s10143-015-0627-1. PubMed

    CrossRef  PubMed  Google Scholar 

  14. Coburger J, Scheuerle A, Thal DR, Engelke J, Hlavac M, Wirtz CR et al (2015) Linear array ultrasound in low-grade glioma surgery: histology-based assessment of accuracy in comparison to conventional intraoperative ultrasound and intraoperative MRI. Acta Neurochir (Wien) 157:195–206, Epub 2015/01/07. doi:10.1007/s00701-014-2314-3. PubMed

    CrossRef  Google Scholar 

  15. Coburger J, König RW, Scheuerle A, Engelke J, Hlavac M, Thal DR et al (2014) Navigated high frequency ultrasound: Description of technique and first clinical comparison with conventional intracranial ultrasound. World Neurosurg

    Google Scholar 

  16. Sure U, Benes L, Bozinov O, Woydt M, Tirakotai W, Bertalanffy H (2005) Intraoperative landmarking of vascular anatomy by integration of duplex and Doppler ultrasonography in image-guided surgery. Technical note. Surg Neurol 63(2):133–141; discussion 41–42. Epub 2005/02/01. doi:10.1016/j.surneu.2004.08.040. PubMed

    CrossRef  PubMed  Google Scholar 

  17. Tirakotai W, Miller D, Heinze S, Benes L, Bertalanffy H, Sure U (2006) A novel platform for image-guided ultrasound. Neurosurgery 58(4):710–718; discussion −8. Epub 2006/04/01. doi: 10.1227/01.neu.0000204454.52414.7a. PubMed

    CrossRef  PubMed  Google Scholar 

  18. Coburger J (2015) Linear array ultrasound: a dedicated tool for a dedicated application. Acta Neurochir (Wien) 157:959–960. doi:10.1007/s00701-015-2406-8, Epub 2015/04/08. PubMed

    CrossRef  Google Scholar 

  19. Mair R, Heald J, Poeata I, Ivanov M (2013) A practical grading system of ultrasonographic visibility for intracerebral lesions. Acta Neurochir 155(12):2293–2298. doi:10.1007/s00701-013-1868-9

    CrossRef  PubMed  Google Scholar 

  20. Yamahara T, Numa Y, Oishi T, Kawaguchi T, Seno T, Asai A et al (2010) Morphological and flow cytometric analysis of cell infiltration in glioblastoma: a comparison of autopsy brain and neuroimaging. Brain Tumor Pathol 27(2):81–87, PubMed

    CrossRef  PubMed  Google Scholar 

  21. McGirt MJ, Mukherjee D, Chaichana KL, Than KD, Weingart JD, Quinones-Hinojosa A (2009) Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 65(3):463–469; discussion 9–70. Epub 2009/08/19. doi:10.1227/01.neu.0000349763.42238.e9. PubMed

    CrossRef  PubMed  Google Scholar 

  22. Unsgaard GK (1999) Atle; ommedal, steinar; gronningsaeter, aage. An ultrasound-based neuronavigation system, a good solution to the brain-shift problem. Neurosurgery 45(3):696

    CrossRef  Google Scholar 

  23. Selbekk T, Jakola AS, Solheim O, Johansen TF, Lindseth F, Reinertsen I et al (2013) Ultrasound imaging in neurosurgery: approaches to minimize surgically induced image artefacts for improved resection control. Acta Neurochir (Wien) 155(6):973–980, Epub 2013/03/06. doi:10.1007/s00701-013-1647-7. PubMed PMID: 23459867; PubMed Central PMCID: PMC3656245

    CrossRef  Google Scholar 

  24. Wong JM, Governale LS, Friedlander RM (2011) Use of a simple internal fiducial as an adjunct to enhance intraoperative ultrasound-assisted guidance: technical note. Neurosurgery 69(1 Suppl Operative):ons34–ons39; discussion ons9. Epub 2011/02/25. doi:10.1227/NEU.0b013e3182124851. PubMed

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jan Coburger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coburger, J., König, R.W. (2016). Intraoperative Findings in Brain Tumor Surgery. In: Prada, F., Solbiati, L., Martegani, A., DiMeco, F. (eds) Intraoperative Ultrasound (IOUS) in Neurosurgery. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25266-7

  • Online ISBN: 978-3-319-25268-1

  • eBook Packages: MedicineMedicine (R0)