Skip to main content

Contrast-Enhanced Ultrasound: Basic Principles, General Application, and Future Trends

  • 1078 Accesses

Abstract

Ultrasound (US) is a real-time, low-cost, noninvasive imaging tool. Nowadays, it is a well-established diagnostic method in some medical fields like cardiology and hepatology. The introduction of US contrast media widened the diagnostic range even more, thanks to increased ecogenicity and blood backscattering, thus helping to visualize deep-sited masses and low flow systems such as the capillary bed. Furthermore, second-generation US contrast agents, showing the capability to resonate with low-intensity US without being consumed, made actual harmonic real-time imaging possible. This leads to increased resolution and signal-to-noise ratio. Even thought contrast-enhanced ultrasound (CEUS) carries many strength points, it allows only qualitative and semiquantitative characterization of lesions; it has a low resolution compared to other imaging modalities, i.e., CT and MRI; and it is highly dependent from operator’s skill. Because of these reasons, research is now focused on some new applications such as perfusion quantification with dedicated software and multimodal imaging in order to allow a more objective approach and to highlight the most relevant properties of different imaging modalities and thus increasing clinical efficacy.

Keywords

  • Contrast Agent
  • Area Under Curve
  • Perfusion Quantification
  • Bubble Shell
  • Vascular Endothelial Growth Factor Type

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25268-1_12
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-25268-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6
Fig. 12.7

References

  1. Catalano A, Farina R (2012) Mezzi di Contrasto in Ecografia CEUS. Metodologia di impiego e Indicazioni cliniche. E.L.I. Medica, Villaricca, Italy

    Google Scholar 

  2. Correas JM, Bridal L, Lesavre A, Méjean A, Claudon M, Hélénon O (2001) Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur Radiol 11(8):1316–1328

    CAS  CrossRef  PubMed  Google Scholar 

  3. Catalano O, Siani A (2007) Ecografia in Oncologia. Testo-atlante di Ultrasonografia diagnostica interventistica nei tumori. I edizione. Spinger, Pagg 36–57

    Google Scholar 

  4. Bertolotto M, Catalano O (2009) Contrast-enhanced ultrasound: past, present, and future. Ultrasound Clin 4(3):339–367. doi:10.1016/j.cult.2009.10.011

    CrossRef  Google Scholar 

  5. Forsberger F et al (1994) Artifacts in ultrasonic contrast agent studies. J Ultrasound Med 13:357–365

    Google Scholar 

  6. Goldberg BB (ed) (1997) Ultrasound contrast agents. Martin Dunitz, London

    Google Scholar 

  7. Leong-Poi H, Song J, Rim S-J, Christiansen J, Kaul S, Lindner JR (2002) Influence of microbubble shell properties on ultrasound signal: implications for low-power perfusion imaging. J Am Soc Echocardiogr 15(10 Pt 2):1269–1276

    CrossRef  PubMed  Google Scholar 

  8. Ter Haar G (2008) Bubble trouble? Ultraschall Med 29(5):550–551. doi:10.1055/s-0028-1098033

    CrossRef  PubMed  Google Scholar 

  9. Torzilli G (2005) Adverse effects associated with SonoVue use. Expert Opin Drug Saf 4(3):399–401. doi:10.1517/14740338.4.3.399

    CAS  CrossRef  PubMed  Google Scholar 

  10. Van Camp G, Droogmans S, Cosyns B (2007) Bio-effects of ultrasound contrast agents in daily clinical practice: fact or fiction? Eur Heart J 28(10):1190–1192

    CrossRef  PubMed  Google Scholar 

  11. Humphrey VF (2007) Ultrasound and matter – physical interactions. Prog Biophys Mol Biol 93(1–3):195–211. doi:10.1016/j.pbiomolbio.2006.07.024

    CrossRef  PubMed  Google Scholar 

  12. Choudhry S, Gorman B, Charboneau JW, Tradup DJ, Beck RJ, Kofler JM, Groth DS (2000) Comparison of tissue harmonic imaging with conventional US in abdominal disease. Radiographics 20(4):1127–1135. doi:10.1148/radiographics.20.4.g00jl371127

    CAS  CrossRef  PubMed  Google Scholar 

  13. Piscaglia F, Nolsoe C, Dietrich CF et al (2012) The EFSUMB guidelines and recommendations on the clinical practice of contrast enhanced ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall Med 33(1):33–59

    CAS  CrossRef  PubMed  Google Scholar 

  14. Catalano O, Aiani A, Barozzi L et al (2009) CEUS in abdominal trauma: multi-center study. Abdom Imaging 34:225–234

    CrossRef  PubMed  Google Scholar 

  15. Correas J-M, Claudon M, Tranquart F, Hélénon AO (2006) The kidney: imaging with microbubble contrast agents. Ultrasound Q 22(1):53–66

    PubMed  Google Scholar 

  16. Girlich C, Jung EM, Huber E, Ott C, Iesalnieks I, Schreyer A, Schacherer D (2011) Comparison between preoperative quantitative assessment of bowel wall vascularization by contrast-enhanced ultrasound and operative macroscopic findings and results of histopathological scoring in Crohn’s disease. Ultraschall Med (Stuttgart, Germany: 1980) 32(2):154–159. doi:10.1055/s-0029-1245398

    CAS  CrossRef  Google Scholar 

  17. Caproni N, Marchisio F, Pecchi A, Canossi B, Battista R, D’Alimonte P, Torricelli P (2010) Contrast-enhanced ultrasound in the characterisation of breast masses: utility of quantitative analysis in comparison with MRI. Eur Radiol 20(6):1384–1395. doi:10.1007/s00330-009-1690-1

    CrossRef  PubMed  Google Scholar 

  18. Geis S, Prantl L, Gehmert S, Lamby P, Nerlich M, Angele P, Jung EM (2011) TTP (time to PEAK) and RBV (regional blood volume) as valuable parameters to detect early flap failure. Clin Hemorheol Microcirc 48(1):81–94. doi:10.3233/CH-2011-1396

    CAS  PubMed  Google Scholar 

  19. Cosgrove D, Lassau N (2010) Imaging of perfusion using ultrasound. Eur J Nucl Med Mol Imaging 37(Suppl 1):S65–S85. doi:10.1007/s00259-010-1537-7

    CrossRef  PubMed  Google Scholar 

  20. Lassau N, Chami L, Chebil M, Benatsou B, Bidault S, Girard E, Roche A (2011) Dynamic contrast-enhanced ultrasonography (DCE-US) and anti-angiogenic treatments. Discov Med 11(56):18–24

    PubMed  Google Scholar 

  21. Lin Y, Chen Z-Y, Yang F (2013) Ultrasound-based multimodal molecular imaging and functional ultrasound contrast agents. Curr Pharm Des 19(18):3342–3351

    CAS  CrossRef  PubMed  Google Scholar 

  22. Cheng X, Li H, Chen Y, Luo B, Liu X, Liu W, Haibo X, Yang X (2013) Ultrasound-triggered phase transition sensitive magnetic fluorescent nanodroplets as a multimodal imaging contrast agent in rat and mouse model. PlosOne. doi:10.1371/journal.pone.0085003

    Google Scholar 

  23. Barrefelt AA et al (2013) Multimodality imaging using SPECT/CT and MRI and ligand functionalized 99mTc-labeled magnetic microbubbles. EJNMMI Res 3:12. doi:10.1186/2191-219X-3-12

    CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Schlaier JR, Warnat J, Dorenbeck U, Proescholdt M, Schebesch K-M, Brawanski A (2004) Image fusion of MR images and real-time ultrasonography: evaluation of fusion accuracy combining two commercial instruments, a neuronavigation system and a ultrasound system. Acta Neurochir 146(3):271–276. doi:10.1007/s00701-003-0155-6; discussion 276–277

    CAS  CrossRef  PubMed  Google Scholar 

  25. Prada F, Del Bene M, Mattei L, Lodigiani L, DeBeni S, Kolev V, DiMeco F (2015) Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery. Ultraschall Med (Stuttgart, Germany: 1980) 36(2):174–186. doi:10.1055/s-0034-1385347

    CAS  Google Scholar 

  26. Marks L, Young S, Natarajan S (2013) MRI-ultrasound fusion for guidance of targeted prostate biopsy. Curr Opin Urol 23(1):43–50. doi:10.1097/MOU.0b013e32835ad3ee

    CrossRef  PubMed  PubMed Central  Google Scholar 

  27. Salomon LJ, Bernard J-P, Millischer A-E, Sonigo P, Brunelle F, Boddaert N, Ville Y (2013) MRI and ultrasound fusion imaging for prenatal diagnosis. Am J Obstet Gynecol 209(2):148.e1–9. doi:10.1016/j.ajog.2013.05.031

    CrossRef  Google Scholar 

  28. Mauri G, Cova L, De Beni S, Ierace T, Tondolo T, Cerri A, Goldberg SN, Solbiati L (2015) Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Intervent Radiol 38(1):143–151. doi:10.1007/s00270-014-0897-y

    CrossRef  PubMed  Google Scholar 

  29. Brismar TB, Grishenkov D, Gustafsson B, Härmark J, Barrefelt A, Kothapalli SV, Margheritelli S, Oddo L, Caidahl K, Hebert H, Paradossi G (2012) Magnetite nanoparticles can be coupled to microbubbles to support multimodal imaging. Biomacromolecules 13(5):1390–1399. doi:10.1021/bm300099f

    CAS  CrossRef  PubMed  Google Scholar 

  30. Nakatsuka MA, Lee JH, Nakayama E, Hung AM, Hsu MJ, Mattrey RF, Goodwin AP (2011) Facile one-pot synthesis of polymer-phospholipid composite microbubbles with enhanced drug loading capacity for ultrasound-triggered therapy. Soft Matt 2011(7):1656–1659. doi:10.1039/C0SM01131B

    CrossRef  Google Scholar 

  31. Cai X, Yang F, Ning G (2012) Applications of magnetic microbubbles for theranostics. Theranostics 2(1):103–112. doi:10.7150/thno.3464

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Yang F, Li Y, Chen Z et al (2009) Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials 30:3882–3890

    CAS  CrossRef  PubMed  Google Scholar 

  33. Moestue SA, Gribbestad IS, Hansen R (2012) Intravascular targets for molecular contrast-enhanced ultrasound imaging. Int J Mol Sci 13(6):6679–6697. doi:10.3390/ijms13066679

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Jain M, Kamal N, Batra SK (2007) Engineering antibodies for clinical applications. Trends Biotechnol 25(7):307–316. doi:10.1016/j.tibtech.2007.05.001

    CAS  CrossRef  PubMed  Google Scholar 

  35. Pillai R, Marinelli ER, Fan H, Nanjappan P, Song B, von Wronski MA, Swenson RE (2010) A phospholipid-PEG2000 conjugate of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeting heterodimer peptide for contrast-enhanced ultrasound imaging of angiogenesis. Bioconjug Chem 21(3):556–562. doi:10.1021/bc9005688

    CAS  CrossRef  PubMed  Google Scholar 

  36. Pochon S, Tardy I, Bussat P, Bettinger T, Brochot J, von Wronski M, Schneider M (2010) BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol 45(2):89–95. doi:10.1097/RLI.0b013e3181c5927c

    CAS  CrossRef  PubMed  Google Scholar 

  37. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    CAS  CrossRef  PubMed  Google Scholar 

  38. Kiessling F, Gaetjens J, Palmowski M (2011) Application of molecular ultrasound for imaging integrin expression. Theranostics 1:127–134

    CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA (2007) Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 13(1):323–330. doi:10.1158/1078-0432.CCR-06-1313

    CAS  CrossRef  PubMed  Google Scholar 

  40. Palmowski M, Huppert J, Ladewig G, Hauff P, Reinhardt M, Mueller MM, Kiessling F (2008) Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol Cancer Ther 7(1):101–109. doi:10.1158/1535-7163.MCT-07-0409

    CAS  CrossRef  PubMed  Google Scholar 

  41. Pysz MA, Foygel K, Rosenberg J, Gambhir SS, Schneider M, Willmann JK (2010) Antiangiogenic cancer therapy: monitoring with molecular US and a clinically translatable contrast agent (BR55). Radiology 256(2):519–527. doi:10.1148/radiol.10091858

    CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Willmann JK, Paulmurugan R, Chen K, Gheysens O, Rodriguez-Porcel M, Lutz AM, Gambhir SS (2008) US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology 246(2):508–518. doi:10.1148/radiol.2462070536

    CrossRef  PubMed  PubMed Central  Google Scholar 

  43. Lee DJ, Lyshchik A, Huamani J, Hallahan DE, Fleischer AC (2008) Relationship between retention of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeted ultrasonographic contrast agent and the level of VEGFR2 expression in an in vivo breast cancer model. J Ultrasound Med 27(6):855–866, Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18499845

    PubMed  Google Scholar 

  44. Liu H, Chen Y, Yan F, Han X, Wu J, Liu X, Zheng H (2015) Ultrasound molecular imaging of vascular endothelial growth factor receptor 2 expression for endometrial receptivity evaluation. Theranostics 5(2):206–217. doi:10.7150/thno.9847

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  45. Sboros V (2008) Response of contrast agents to ultrasound. Adv Drug Deliv Rev 60(10):1117–1136. doi:10.1016/j.addr.2008.03.011

    CAS  CrossRef  PubMed  Google Scholar 

  46. Mitragotri S (2005) Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 4(3):255–260. doi:10.1038/nrd1662

    CAS  CrossRef  PubMed  Google Scholar 

  47. Dalecki D (2004) Mechanical bioeffects of ultrasound. Annu Rev Biomed Eng 6:229–248. doi:10.1146/annurev.bioeng.6.040803.140126

    CAS  CrossRef  PubMed  Google Scholar 

  48. Fan C-H, Lin W-H, Ting C-Y, Chai W-Y, Yen T-C, Liu H-L, Yeh C-K (2014) Contrast-enhanced ultrasound imaging for the detection of focused ultrasound-induced blood–brain barrier opening. Theranostics 4(10):1014–1025. doi:10.7150/thno.9575

    CrossRef  PubMed  PubMed Central  Google Scholar 

  49. Liu H-L, Fan C-H, Ting C-Y, Yeh C-K (2014) Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 4(4):432–444. doi:10.7150/thno.8074

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Caremani MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Caremani, M., Richetta, C., Caremani, D. (2016). Contrast-Enhanced Ultrasound: Basic Principles, General Application, and Future Trends. In: Prada, F., Solbiati, L., Martegani, A., DiMeco, F. (eds) Intraoperative Ultrasound (IOUS) in Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-25268-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25268-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25266-7

  • Online ISBN: 978-3-319-25268-1

  • eBook Packages: MedicineMedicine (R0)