Skip to main content

Navigable Ultrasound, 3D Ultrasound and Fusion Imaging in Neurosurgery

Abstract

Conventional two-dimensional ultrasound has limitations as an intraoperative imaging tool. Lack of a full head view and incomplete anatomical details lead to difficulties in orientation. Three-dimensional ultrasound provides volumetric information. Combination of the ultrasound (2D as well as 3D) with navigation technology results in navigated US. This technique overcomes most of the limitations of 2DUS and is a powerful tool for real-time intraoperative navigation. Multimodal fusion strategies permit coregistration of intraoperative US and preoperative MR images, extracting the maximum benefits of both. This approach can even assess and correct brain shift, though the accuracy of such correction still needs further refinement. Irrespective of the image fusion, stand-alone navigated 3DUS can often be sufficient for effective resection control of tumours. In this chapter we discuss these aspects and their clinical implications.

Keywords

  • Image Fusion
  • Brain Shift Correction
  • Resection Control
  • Intraoperative Real-time Navigation
  • Conventional Navigation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25268-1_11
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-25268-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6

References

  1. Arbel T, Morandi X, Comeau RM, Collins DL. Automatic non-linear MRI-ultrasound registration for the correction of intra-operative brain deformations. Comput Aided Surg. 2004;9(4):123–36.

    CrossRef  PubMed  Google Scholar 

  2. Becker G, Hofmann E, Woydt M, Hulsmann U, Maurer M, Lindner A, Becker T, Krone A. Postoperative neuroimaging of high-grade gliomas: comparison of transcranial sonography, magnetic resonance imaging, and computed tomography. Neurosurgery. 1999;44(3):469–77; discussion 477–468.

    CAS  CrossRef  PubMed  Google Scholar 

  3. Bo LE, Hofstad EF, Lindseth F, Hernes TA. Versatile robotic probe calibration for position tracking in ultrasound imaging. Phys Med Biol. 2015;60(9):3499–513.

    CrossRef  PubMed  Google Scholar 

  4. Bozinov O, Burkhardt JK, Fischer CM, Kockro RA, Bernays RL, Bertalanffy H. Advantages and limitations of intraoperative 3D ultrasound in neurosurgery. Technical note. Acta Neurochir Suppl. 2011;109:191–6.

    CrossRef  PubMed  Google Scholar 

  5. Chalopin C, Lindenberg R, Arlt F, Müns A, Meixensberger J, Lindner D (2012) Brain tumor enhancement revealed by 3D intraoperative ultrasound imaging in a navigation system. Biomed Eng 57(SI-1 Track-B)

    Google Scholar 

  6. Coburger J, Konig RW, Scheuerle A, Engelke J, Hlavac M, Thal DR, Wirtz CR. Navigated high frequency ultrasound: description of technique and clinical comparison with conventional intracranial ultrasound. World Neurosurg. 2014;82(3–4):366–75.

    CrossRef  PubMed  Google Scholar 

  7. Comeau RM, Fenster A, Peters TM. Intraoperative US in interactive image-guided neurosurgery. Radiographics. 1998;18(4):1019–27.

    CAS  CrossRef  PubMed  Google Scholar 

  8. D'Agostino E, Maes F, Vandermeulen D, Suetens P. A viscous fluid model for multimodal non-rigid image registration using mutual information. Med Image Anal. 2003;7(4):565–75.

    CrossRef  PubMed  Google Scholar 

  9. Ewertsen C, Grossjohann HS, Nielsen KR, Torp-Pedersen S, Nielsen MB. Biopsy guided by real-time sonography fused with MRI: a phantom study. AJR Am J Roentgenol. 2008;190(6):1671–4.

    CrossRef  PubMed  Google Scholar 

  10. Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK. Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging. 2001;20(12):1384–97.

    CAS  CrossRef  PubMed  Google Scholar 

  11. Giorgi C, Casolino DS. Preliminary clinical experience with intraoperative stereotactic ultrasound imaging. Stereotact Funct Neurosurg. 1997;68(1–4 Pt 1):54–8.

    CAS  PubMed  Google Scholar 

  12. Glasker S, Shah MJ, Hippchen B, Neumann HP, van Velthoven V. Doppler-sonographically guided resection of central nervous system hemangioblastomas. Neurosurgery. 2011;68(2 Suppl Operative):267–75; discussion 274–265.

    PubMed  Google Scholar 

  13. Gronningsaeter A, Kleven A, Ommedal S, Aarseth TE, Lie T, Lindseth F, Lango T, Unsgard G. SonoWand, an ultrasound-based neuronavigation system. Neurosurgery. 2000;47(6):1373–9; discussion 1379–1380.

    CAS  CrossRef  PubMed  Google Scholar 

  14. Hata N, Dohi T, Iseki H, Takakura K. Development of a frameless and armless stereotactic neuronavigation system with ultrasonographic registration. Neurosurgery. 1997;41(3):608–13; discussion 613–604.

    CAS  PubMed  Google Scholar 

  15. Ji S, Roberts DW, Hartov A, Paulsen KD. Combining multiple true 3D ultrasound image volumes through re-registration and rasterization. Med Image Comput Comput Assist Interv. 2009;12(Pt 1):795–802.

    PubMed  PubMed Central  Google Scholar 

  16. Jodicke A, Deinsberger W, Erbe H, Kriete A, Boker DK. Intraoperative three-dimensional ultrasonography: an approach to register brain shift using multidimensional image processing. Minim Invasive Neurosurg. 1998;41(1):13–9.

    CAS  CrossRef  PubMed  Google Scholar 

  17. Keles GE, Lamborn KR, Berger MS. Coregistration accuracy and detection of brain shift using intraoperative sononavigation during resection of hemispheric tumors. Neurosurgery. 2003;53(3):556–64.

    CrossRef  PubMed  Google Scholar 

  18. Koivukangas J, Louhisalmi Y, Alakuijala J, Oikarinen J. Ultrasound-controlled neuronavigator-guided brain surgery. J Neurosurg. 1993;79(1):36–42.

    CAS  CrossRef  PubMed  Google Scholar 

  19. Lindner D, Trantakis C, Renner C, Arnold S, Schmitgen A, Schneider J, Meixensberger J. Application of intraoperative 3D ultrasound during navigated tumor resection. Minim Invasive Neurosurg. 2006;49(4):197–202.

    CAS  CrossRef  PubMed  Google Scholar 

  20. Lindseth F, Lango T, Bang J, Nagelhus Hernes TA. Accuracy evaluation of a 3D ultrasound-based neuronavigation system. Comput Aided Surg. 2002;7(4):197–222.

    CrossRef  PubMed  Google Scholar 

  21. Lindseth F, Lovstakken L, Rygh OM, Tangen GA, Torp H, Unsgaard G. Blood flow imaging: an angle-independent ultrasound modality for intraoperative assessment of flow dynamics in neurovascular surgery. Neurosurgery. 2009;65(6 Suppl):149–57; discussion 157.

    PubMed  Google Scholar 

  22. Lindseth F, Tangen GA, Lango T, Bang J. Probe calibration for freehand 3-D ultrasound. Ultrasound Med Biol. 2003;29(11):1607–23.

    CrossRef  PubMed  Google Scholar 

  23. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging. 1997;16(2):187–98.

    CAS  CrossRef  PubMed  Google Scholar 

  24. Maes F, Vandermeulen D, Suetens P. Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information. Med Image Anal. 1999;3(4):373–86.

    CAS  CrossRef  PubMed  Google Scholar 

  25. Mathiesen T, Peredo I, Edner G, Kihlstrom L, Svensson M, Ulfarsson E, Andersson T. Neuronavigation for arteriovenous malformation surgery by intraoperative three-dimensional ultrasound angiography. Neurosurgery. 2007;60(4 Suppl 2):345–50; discussion 350–341.

    PubMed  Google Scholar 

  26. Mercier L, Araujo D, Haegelen C, Del Maestro RF, Petrecca K, Collins DL. Registering pre- and postresection 3-dimensional ultrasound for improved visualization of residual brain tumor. Ultrasound Med Biol. 2013;39(1):16–29.

    CrossRef  PubMed  Google Scholar 

  27. Mercier L, Lango T, Lindseth F, Collins DL. A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med Biol. 2005;31(4):449–71.

    CrossRef  PubMed  Google Scholar 

  28. Miller D, Benes L, Sure U. Stand-alone 3D-ultrasound navigation after failure of conventional image guidance for deep-seated lesions. Neurosurg Rev. 2011;34(3):381–7; discussion 387–388.

    CrossRef  PubMed  Google Scholar 

  29. Miller D, Heinze S, Tirakotai W, Bozinov O, Surucu O, Benes L, Bertalanffy H, Sure U. Is the image guidance of ultrasonography beneficial for neurosurgical routine? Surg Neurol. 2007;67(6):579–87; discussion 587–578.

    CrossRef  PubMed  Google Scholar 

  30. Miller D, Lippert C, Vollmer F, Bozinov O, Benes L, Schulte DM, Sure U. Comparison of different reconstruction algorithms for three-dimensional ultrasound imaging in a neurosurgical setting. Int J Med Robot. 2012;8(3):348–59.

    CAS  CrossRef  PubMed  Google Scholar 

  31. Moiyadi AV, Shetty PM, Mahajan A, Udare A, Sridhar E. Usefulness of three-dimensional navigable intraoperative ultrasound in resection of brain tumors with a special emphasis on malignant gliomas. Acta Neurochir (Wien). 2013;155(12):2217–25.

    CrossRef  Google Scholar 

  32. Muns A, Meixensberger J, Arnold S, Schmitgen A, Arlt F, Chalopin C, Lindner D. Integration of a 3D ultrasound probe into neuronavigation. Acta Neurochir (Wien). 2011;153(7):1529–33.

    CrossRef  Google Scholar 

  33. Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi Jr RS, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells 3rd WM, Kikinis R, Jolesz FA. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery. 2001;48(4):787–97; discussion 797–788.

    CAS  PubMed  Google Scholar 

  34. Nagelhus Hernes TA, Lindseth F, Selbekk T, Wollf A, Solberg OV, Harg E, Rygh OM, Tangen GA, Rasmussen I, Augdal S, Couweleers F, Unsgaard G. Computer-assisted 3D ultrasound-guided neurosurgery: technological contributions, including multimodal registration and advanced display, demonstrating future perspectives. Int J Med Robot. 2006;2(1):45–59.

    CrossRef  PubMed  Google Scholar 

  35. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R. Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery. 2000;47(5):1070–9; discussion 1079–1080.

    CAS  CrossRef  PubMed  Google Scholar 

  36. Ohue S, Kumon Y, Nagato S, Kohno S, Harada H, Nakagawa K, Kikuchi K, Miki H, Ohnishi T. Evaluation of intraoperative brain shift using an ultrasound-linked navigation system for brain tumor surgery. Neurol Med Chir (Tokyo). 2010;50(4):291–300.

    CrossRef  Google Scholar 

  37. Pagoulatos N, Haynor DR, Kim Y. A fast calibration method for 3-D tracking of ultrasound images using a spatial localizer. Ultrasound Med Biol. 2001;27(9):1219–29.

    CAS  CrossRef  PubMed  Google Scholar 

  38. Peredo-Harvey I, Lilja A, Mathiesen T. Post-craniotomy neuronavigation based purely on intraoperative ultrasound imaging without preoperative neuronavigational planning. Neurosurg Rev. 2012;35(2):263–8; discussion 268.

    CrossRef  PubMed  Google Scholar 

  39. Prada F, Del Bene M, Mattei L, Lodigiani L, DeBeni S, Kolev V, Vetrano I, Solbiati L, Sakas G, DiMeco F. Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery. Ultraschall Med. 2015;36(2):174–86.

    CAS  PubMed  Google Scholar 

  40. Rasmussen Jr IA, Lindseth F, Rygh OM, Berntsen EM, Selbekk T, Xu J, Nagelhus Hernes TA, Harg E, Haberg A, Unsgaard G. Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir (Wien). 2007;149(4):365–78.

    CrossRef  Google Scholar 

  41. Reinertsen I, Lindseth F, Askeland C, Iversen DH, Unsgard G. Intra-operative correction of brain-shift. Acta Neurochir (Wien). 2014;156(7):1301–10.

    CrossRef  Google Scholar 

  42. Renovanz M, Hickmann AK, Henkel C, Nadji-Ohl M, Hopf NJ. Navigated versus non-navigated Intraoperative ultrasound: is there any impact on the extent of resection of high-grade gliomas? A retrospective clinical analysis. J Neurol Surg A Cent Eur Neurosurg. 2014;75(3):224–30.

    CrossRef  PubMed  Google Scholar 

  43. Roberts DW, Miga MI, Hartov A, Eisner S, Lemery JM, Kennedy FE, Paulsen KD. Intraoperatively updated neuroimaging using brain modeling and sparse data. Neurosurgery. 1999;45(5):1199–206; discussion 1206–1197.

    CAS  CrossRef  PubMed  Google Scholar 

  44. Rygh OM, Nagelhus Hernes TA, Lindseth F, Selbekk T, Brostrup Muller T, Unsgaard G. Intraoperative navigated 3-dimensional ultrasound angiography in tumor surgery. Surg Neurol. 2006;66(6):581–92; discussion 592.

    CrossRef  PubMed  Google Scholar 

  45. Saether CA, Torsteinsen M, Torp SH, Sundstrom S, Unsgard G, Solheim O. Did survival improve after the implementation of intraoperative neuronavigation and 3D ultrasound in glioblastoma surgery? A retrospective analysis of 192 primary operations. J Neurol Surg A Cent Eur Neurosurg. 2012;73(2):73–8.

    CAS  CrossRef  PubMed  Google Scholar 

  46. Selbekk T, Jakola AS, Solheim O, Johansen TF, Lindseth F, Reinertsen I, Unsgard G. Ultrasound imaging in neurosurgery: approaches to minimize surgically induced image artefacts for improved resection control. Acta Neurochir (Wien). 2013;155(6):973–80.

    CrossRef  Google Scholar 

  47. Solberg OV, Lindseth F, Bo LE, Muller S, Bakeng JB, Tangen GA, Hernes TA. 3D ultrasound reconstruction algorithms from analog and digital data. Ultrasonics. 2011;51(4):405–19.

    CrossRef  PubMed  Google Scholar 

  48. Solberg OV, Lindseth F, Torp H, Blake RE, Nagelhus Hernes TA. Freehand 3D ultrasound reconstruction algorithms--a review. Ultrasound Med Biol. 2007;33(7):991–1009.

    CrossRef  PubMed  Google Scholar 

  49. Sure U, Benes L, Bozinov O, Woydt M, Tirakotai W, Bertalanffy H. Intraoperative landmarking of vascular anatomy by integration of duplex and Doppler ultrasonography in image-guided surgery. Technical note. Surg Neurol. 2005;63(2):133–41; discussion 141–132.

    CrossRef  PubMed  Google Scholar 

  50. Tirakotai W, Miller D, Heinze S, Benes L, Bertalanffy H, Sure U. A novel platform for image-guided ultrasound. Neurosurgery. 2006;58(4):710–8; discussion 710–718.

    CrossRef  PubMed  Google Scholar 

  51. Trantakis C, Meixensberger J, Lindner D, Strauss G, Grunst G, Schmidtgen A, Arnold S. Iterative neuronavigation using 3D ultrasound. A feasibility study. Neurol Res. 2002;24(7):666–70.

    CrossRef  PubMed  Google Scholar 

  52. Trobaugh JW, Richard WD, Smith KR, Bucholz RD. Frameless stereotactic ultrasonography: method and applications. Comput Med Imaging Graph. 1994;18(4):235–46.

    CAS  CrossRef  PubMed  Google Scholar 

  53. Unsgaard G, Ommedal S, Rygh OM, Lindseth F. Operation of arteriovenous malformations assisted by stereoscopic navigation-controlled display of preoperative magnetic resonance angiography and intraoperative ultrasound angiography. Neurosurgery. 2005;56 Suppl 2:281–90.

    PubMed  Google Scholar 

  54. Unsgaard G, Rygh OM, Selbekk T, Muller TB, Kolstad F, Lindseth F, Hernes TA. Intra-operative 3D ultrasound in neurosurgery. Acta Neurochir (Wien). 2006;148(3):235–53; discussion 253.

    CAS  CrossRef  Google Scholar 

  55. Unsgaard G, Selbekk T, Brostrup Muller T, Ommedal S, Torp SH, Myhr G, Bang J, Nagelhus Hernes TA. Ability of navigated 3D ultrasound to delineate gliomas and metastases – comparison of image interpretations with histopathology. Acta Neurochir (Wien). 2005;147(12):1259–69; discussion 1269.

    CAS  CrossRef  Google Scholar 

  56. Unsgard G, Solheim O, Lindseth F, Selbekk T. Intra-operative imaging with 3D ultrasound in neurosurgery. Acta Neurochir Suppl. 2011;109:181–6.

    CrossRef  PubMed  Google Scholar 

  57. Wells 3rd WM, Viola P, Atsumi H, Nakajima S, Kikinis R. Multi-modal volume registration by maximization of mutual information. Med Image Anal. 1996;1(1):35–51.

    CrossRef  PubMed  Google Scholar 

  58. Willems PW, Taphoorn MJ, Burger H, Berkelbach van der Sprenkel JW, Tulleken CA. Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J Neurosurg. 2006;104(3):360–8.

    CrossRef  PubMed  Google Scholar 

  59. Wirtz CR, Albert FK, Schwaderer M, Heuer C, Staubert A, Tronnier VM, Knauth M, Kunze S. The benefit of neuronavigation for neurosurgery analyzed by its impact on glioblastoma surgery. Neurol Res. 2000;22(4):354–60.

    CAS  PubMed  Google Scholar 

  60. Zhou H, Miller D, Schulte DM, Benes L, Rosenow F, Bertalanffy H, Sure U. Transsulcal approach supported by navigation-guided neurophysiological monitoring for resection of paracentral cavernomas. Clin Neurol Neurosurg. 2009;111(1):69–78.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliasgar V. Moiyadi MCh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moiyadi, A.V., Unsgård, G. (2016). Navigable Ultrasound, 3D Ultrasound and Fusion Imaging in Neurosurgery. In: Prada, F., Solbiati, L., Martegani, A., DiMeco, F. (eds) Intraoperative Ultrasound (IOUS) in Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-25268-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25268-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25266-7

  • Online ISBN: 978-3-319-25268-1

  • eBook Packages: MedicineMedicine (R0)