Skip to main content

Virtual Navigation and Interventional Procedures

  • 1060 Accesses

Abstract

Image-guided interventional procedures are playing an increasingly important role for a diverse set of therapies, from endovascular procedures to percutaneous thermal ablation [7, 28, 32, 54], medical fields for which imaging plays a crucial role. The optimal visualization of patient’s anatomy, treatment target, and devices used is of paramount importance for achieving the best clinical results. Over the last several years, the technological advancement of imaging modalities has been impressive. Modern computed tomography (CT) scanners allow for a complete cardiac scan in less than one second with reduced radiation dose [10, 21]. Thanks to 3T magnets, it is possible to achieve incredibly defined magnetic resonance (MR) images [5, 43], and high real-time image quality is currently a standard in ultrasound equipment [6, 63]. However, intrinsic limitations still exist for most if not all imaging modalities. Thus, besides developing further technological advancements for each single modality, a complementary strategy has been proposed, i.e., fusing information obtained from different imaging modalities in order to overcome the limitations of individual modalities [3, 8, 30, 31, 34, 39, 42, 64]. In diagnostic imaging, this concept has led to the birth of hybrid CT and positron emission tomography (PET) scanners, which provide, in a single examination, high-quality anatomic information (thanks to CT) merged with functional information deriving from different tracers detected by PET scanners [1, 8, 36]. In interventional radiology, fusion of real-time ultrasound (US) with CT, MR, or even CT/PET images has been reported as being not only feasible but also effective in guiding percutaneous biopsies and ablations through the body and is thought to be one of the main improvements that will propel the future of interventional radiology [3, 26, 30, 41, 62].

Keywords

  • Positron Emission Tomography
  • Image Fusion
  • Interventional Procedure
  • Image Dataset
  • Virtual Space

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25268-1_10
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-25268-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5
Fig. 10.6

References

  1. Abi-Jaoudeh N, Kruecker J, Kadoury S et al (2012) Multimodality image fusion-guided procedures: technique, accuracy, and applications. Cardiovasc Intervent Radiol 35:986–998. doi:10.1007/s00270-012-0446-5

    CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Amalou H, Wood BJ (2012) Multimodality fusion with MRI, CT, and ultrasound contrast for ablation of renal cell carcinoma. Case Rep Urol 2012:390912. doi:10.1155/2012/390912

    PubMed  PubMed Central  Google Scholar 

  3. Appelbaum L, Mahgerefteh SY, Sosna J, Goldberg SN (2013) Image-guided fusion and navigation: applications in tumor ablation. Tech Vasc Interv Radiol 16:287–295. doi:10.1053/j.tvir.2013.08.011

    CrossRef  PubMed  Google Scholar 

  4. Appelbaum L, Solbiati L, Sosna J et al (2013) Evaluation of an electromagnetic image-fusion navigation system for biopsy of small lesions: assessment of accuracy in an in vivo swine model. Acad Radiol 20:209–217. doi:10.1016/j.acra.2012.09.020

    CrossRef  PubMed  Google Scholar 

  5. Baulch J, Gandhi M, Sommerville J, Panizza B (2015) 3T MRI evaluation of large nerve perineural spread of head and neck cancers. J Med Imaging Radiat Oncol. doi:10.1111/1754-9485.12338

    PubMed  Google Scholar 

  6. Baumgart DC, Müller HP, Grittner U et al (2015) US-based real-time elastography for the detection of fibrotic gut tissue in patients with stricturing Crohn disease. Radiology 275:889–899. doi:10.1148/radiol.14141929

    CrossRef  PubMed  Google Scholar 

  7. Belli A-M, Markose G, Morgan R (2012) The role of interventional radiology in the management of abdominal visceral artery aneurysms. Cardiovasc Intervent Radiol 35:234–243. doi:10.1007/s00270-011-0201-3

    CrossRef  PubMed  Google Scholar 

  8. Beyer T, Townsend DW, Brun T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    CAS  PubMed  Google Scholar 

  9. Sconfienza LM1, Mauri G, Grossi F, et al (2013) Pleural and peripheral lung lesions: comparison of US- and CT-guided biopsy. Radiology 266(3):930–935. doi: 10.1148/radiol.12112077

    Google Scholar 

  10. Chen MY, Shanbhag SM, Arai AE (2013) Submillisievert median radiation dose for coronary angiography with a second-generation 320-detector row CT scanner in 107 consecutive patients. Radiology 267:76–85. doi:10.1148/radiol.13122621

    CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Chung DYF, Tse DML, Boardman P et al (2014) High-frequency jet ventilation under general anesthesia facilitates CT-guided lung tumor thermal ablation compared with normal respiration under conscious analgesic sedation. J Vasc Interv Radiol 25:1463–1469. doi:10.1016/j.jvir.2014.02.026

    CrossRef  PubMed  Google Scholar 

  12. Denys A, Lachenal Y, Duran R et al (2014) Use of high-frequency jet ventilation for percutaneous tumor ablation. Cardiovasc Intervent Radiol 37:140–146. doi:10.1007/s00270-013-0620-4

    CrossRef  PubMed  Google Scholar 

  13. Di Mauro E, Solbiati M, De Beni S et al (2013) Virtual navigator real-time ultrasound fusion imaging with positron emission tomography for liver interventions. Conf Proc IEEE Eng Med Biol Soc 2013:1406–1409. doi:10.1109/EMBC.2013.6609773

    PubMed  Google Scholar 

  14. Eisenberg JD, Gervais DA, Singh S et al (2015) Radiation exposure from CT-guided ablation of renal masses: effects on life expectancy. AJR Am J Roentgenol 204:335–342. doi:10.2214/AJR.14.13010

    CrossRef  PubMed  Google Scholar 

  15. Giesel FL, Mehndiratta A, Locklin J et al (2009) Image fusion using CT, MRI and PET for treatment planning, navigation and follow up in percutaneous RFA. Exp Oncol 31:106–114

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Grasso RF, Cazzato RL, Luppi G et al (2013) Percutaneous lung biopsies: performance of an optical CT-based navigation system with a low-dose protocol. Eur Radiol 23:3071–3076. doi:10.1007/s00330-013-2932-9

    CrossRef  PubMed  Google Scholar 

  17. Grasso RF, Faiella E, Luppi G et al (2013) Percutaneous lung biopsy: comparison between an augmented reality CT navigation system and standard CT-guided technique. Int J Comput Assist Radiol Surg 8:837–848. doi:10.1007/s11548-013-0816-8

    CAS  CrossRef  PubMed  Google Scholar 

  18. Hakime A, Deschamps F, De Carvalho EGM et al (2011) Clinical evaluation of spatial accuracy of a fusion imaging technique combining previously acquired computed tomography and real-time ultrasound for imaging of liver metastases. Cardiovasc Intervent Radiol 34:338–344. doi:10.1007/s00270-010-9979-7

    CrossRef  PubMed  Google Scholar 

  19. Hung AJ, Ma Y, Zehnder P et al (2012) Percutaneous radiofrequency ablation of virtual tumours in canine kidney using Global Positioning System-like technology. BJU Int 109:1398–1403. doi:10.1111/j.1464-410X.2011.10648.x

    CrossRef  PubMed  Google Scholar 

  20. Krücker J, Xu S, Venkatesan A et al (2011) Clinical utility of real-time fusion guidance for biopsy and ablation. J Vasc Interv Radiol 22:515–524. doi:10.1016/j.jvir.2010.10.033

    CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Lell MM, Wildberger JE, Alkadhi H et al (2015) Evolution in computed tomography: the battle for speed and dose. Invest Radiol. doi:10.1097/RLI.0000000000000172

    Google Scholar 

  22. Liu F-Y, Yu X-L, Liang P et al (2012) Microwave ablation assisted by a real-time virtual navigation system for hepatocellular carcinoma undetectable by conventional ultrasonography. Eur J Radiol 81:1455–1459. doi:10.1016/j.ejrad.2011.03.057

    CrossRef  PubMed  Google Scholar 

  23. Livraghi T, Solbiati L, Meloni F et al (2003) Percutaneous radiofrequency ablation of liver metastases in potential candidates for resection: the “test-of-time approach”. Cancer 97:3027–3035. doi:10.1002/cncr.11426

    CrossRef  PubMed  Google Scholar 

  24. Lu Q, Cao W, Huang L et al (2012) CT-guided percutaneous microwave ablation of pulmonary malignancies: Results in 69 cases. World J Surg Oncol 10:80. doi:10.1186/1477-7819-10-80

    CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Mauri G, De Beni S, Forzoni L et al (2014) Virtual navigator automatic registration technology in abdominal application. Conf Proc IEEE Eng Med Biol Soc 2014:5570–5574

    CAS  PubMed  Google Scholar 

  26. Mauri G, Cova L, De Beni S et al (2014) Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Intervent Radiol. doi:10.1007/s00270-014-0897-y

    Google Scholar 

  27. Mauri G, Cova L, Tondolo T et al (2013) Percutaneous laser ablation of metastatic lymph nodes in the neck from papillary thyroid carcinoma: preliminary results. J Clin Endocrinol Metab 98:E1203–E1207. doi:10.1210/jc.2013-1140

    CAS  CrossRef  PubMed  Google Scholar 

  28. Mauri G, Mattiuz C, Sconfienza LM et al (2014) Role of interventional radiology in the management of complications after pancreatic surgery: a pictorial review. Insights Imaging. doi:10.1007/s13244-014-0372-y

    Google Scholar 

  29. Mauri G, Porazzi E, Cova L et al (2014) Intraprocedural contrast-enhanced ultrasound (CEUS) in liver percutaneous radiofrequency ablation: clinical impact and health technology assessment. Insights Imaging 5:209–216. doi:10.1007/s13244-014-0315-7

    CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Mauri G, Solbiati L (2015) Virtual navigation and fusion imaging in percutaneous ablations in the neck. Ultrasound Med Biol 41:898. doi:10.1016/j.ultrasmedbio.2014.10.022

    CrossRef  PubMed  Google Scholar 

  31. Miwa K, Matsuo M, Ogawa S et al (2014) Re-irradiation of recurrent glioblastoma multiforme using 11C-methionine PET/CT/MRI image fusion for hypofractionated stereotactic radiotherapy by intensity modulated radiation therapy. Radiat Oncol 9:181. doi:10.1186/1748-717X-9-181

    CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Molla N, AlMenieir N, Simoneau E et al (2014) The role of interventional radiology in the management of hepatocellular carcinoma. Curr Oncol 21:e480–e492. doi:10.3747/co.21.1829

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Muller A, Petrusca L, Auboiroux V et al (2013) Management of respiratory motion in extracorporeal high-intensity focused ultrasound treatment in upper abdominal organs: current status and perspectives. Cardiovasc Intervent Radiol 36:1464–1476. doi:10.1007/s00270-013-0713-0

    CAS  CrossRef  PubMed  Google Scholar 

  34. Nagamachi S, Nishii R, Wakamatsu H et al (2013) The usefulness of (18)F-FDG PET/MRI fusion image in diagnosing pancreatic tumor: comparison with (18)F-FDG PET/CT. Ann Nucl Med 27:554–563. doi:10.1007/s12149-013-0719-3

    CrossRef  PubMed  Google Scholar 

  35. Narsule CK, Sales Dos Santos R, Gupta A et al (2012) The efficacy of electromagnetic navigation to assist with computed tomography-guided percutaneous thermal ablation of lung tumors. Innovations (Phila) 7:187–190. doi:10.1097/IMI.0b013e318265b127

    CrossRef  Google Scholar 

  36. Oriuchi N, Higuchi T, Ishikita T et al (2006) Present role and future prospects of positron emission tomography in clinical oncology. Cancer Sci 97:1291–1297. doi:10.1111/j.1349-7006.2006.00341.x

    CAS  CrossRef  PubMed  Google Scholar 

  37. Oto A, Sethi I, Karczmar G et al (2013) MR imaging-guided focal laser ablation for prostate cancer: phase I trial. Radiology 267:932–940. doi:10.1148/radiol.13121652

    CrossRef  PubMed  Google Scholar 

  38. Pacella CM, Bizzarri G, Spiezia S et al (2004) Thyroid tissue: US-guided percutaneous laser thermal ablation. Radiology 232:272–280. doi:10.1148/radiol.2321021368

    CrossRef  PubMed  Google Scholar 

  39. Paparo F, Piccardo A, Bacigalupo L et al (2015) Multimodality fusion imaging in abdominal and pelvic malignancies: current applications and future perspectives. Abdom Imaging. doi:10.1007/s00261-015-0435-7

    Google Scholar 

  40. Paparo F, Piccardo A, Bacigalupo L et al (2015) Multimodality fusion imaging in abdominal and pelvic malignancies: current applications and future perspectives. Abdom Imaging. doi:10.1007/s00261-015-0435-7

    Google Scholar 

  41. Paparo F, Piccazzo R, Cevasco L et al (2014) Advantages of percutaneous abdominal biopsy under PET-CT/ultrasound fusion imaging guidance: a pictorial essay. Abdom Imaging 39:1102–1113. doi:10.1007/s00261-014-0143-8

    CrossRef  PubMed  Google Scholar 

  42. Prada F, Del Bene M, Mattei L et al (2015) Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery. Ultraschall Med 36:174–186. doi:10.1055/s-0034-1385347

    CAS  PubMed  Google Scholar 

  43. Price SJ, Young AMH, Scotton WJ et al (2015) Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas. J Magn Reson Imaging. doi:10.1002/jmri.24996

    PubMed  Google Scholar 

  44. Quinn SF, Murtagh FR, Chatfield R, Kori SH (1988) CT-guided nerve root block and ablation. AJR Am J Roentgenol 151:1213–1216. doi:10.2214/ajr.151.6.1213

    CAS  CrossRef  PubMed  Google Scholar 

  45. Rehnitz C, Sprengel SD, Lehner B et al (2012) CT-guided radiofrequency ablation of osteoid osteoma and osteoblastoma: clinical success and long-term follow up in 77 patients. Eur J Radiol 81:3426–3434. doi:10.1016/j.ejrad.2012.04.037

    CrossRef  PubMed  Google Scholar 

  46. Rempp H, Waibel L, Hoffmann R et al (2012) MR-guided radiofrequency ablation using a wide-bore 1.5-T MR system: clinical results of 213 treated liver lesions. Eur Radiol 22:1972–1982. doi:10.1007/s00330-012-2438-x

    CrossRef  PubMed  Google Scholar 

  47. Santos RS, Gupta A, Ebright MI et al (2010) Electromagnetic navigation to aid radiofrequency ablation and biopsy of lung tumors. Ann Thorac Surg 89:265–268. doi:10.1016/j.athoracsur.2009.06.006

    CrossRef  PubMed  Google Scholar 

  48. Sconfienza LM, Mauri G, Grossi F et al (2013) Pleural and peripheral lung lesions: comparison of US- and CT-guided biopsy. Radiology 266:930–935. doi:10.1148/radiol.12112077

    CrossRef  PubMed  Google Scholar 

  49. Shyn PB (2013) Interventional positron emission tomography/computed tomography: state-of-the-art. Tech Vasc Interv Radiol 16:182–190. doi:10.1053/j.tvir.2013.02.014

    CrossRef  PubMed  Google Scholar 

  50. Shyn PB, Mauri G, Alencar RO et al (2014) Percutaneous imaging-guided cryoablation of liver tumors: predicting local progression on 24-hour MRI. AJR Am J Roentgenol 203:1–11. doi:10.2214/AJR.13.10747

    CrossRef  Google Scholar 

  51. Shyn PB, Tatli S, Sahni VA et al (2014) PET/CT-guided percutaneous liver mass biopsies and ablations: targeting accuracy of a single 20 s breath-hold PET acquisition. Clin Radiol 69:410–415. doi:10.1016/j.crad.2013.11.013

    CAS  CrossRef  PubMed  Google Scholar 

  52. Shyn PB, Tatli S, Sainani NI et al (2011) Minimizing image misregistration during PET/CT-guided percutaneous interventions with monitored breath-hold PET and CT acquisitions. J Vasc Interv Radiol 22:1287–1292. doi:10.1016/j.jvir.2011.06.015

    CrossRef  PubMed  Google Scholar 

  53. Silverman SG, Tuncali K, Morrison PR (2005) MR Imaging-guided percutaneous tumor ablation. Acad Radiol 12:1100–1109. doi:10.1016/j.acra.2005.05.019

    CrossRef  PubMed  Google Scholar 

  54. Solbiati L, Ahmed M, Cova L et al (2012) Small liver colorectal metastases treated with percutaneous radiofrequency ablation: local response rate and long-term survival with up to 10-year follow-up. Radiology 265:958–968. doi:10.1148/radiol.12111851

    CrossRef  PubMed  Google Scholar 

  55. Solbiati L, Giangrande A, De Pra L et al (1985) Percutaneous ethanol injection of parathyroid tumors under US guidance: treatment for secondary hyperparathyroidism. Radiology 155:607–610. doi:10.1148/radiology.155.3.3889999

    CAS  CrossRef  PubMed  Google Scholar 

  56. Solbiati L, Ierace T, Tonolini M, Cova L (2004) Guidance and monitoring of radiofrequency liver tumor ablation with contrast-enhanced ultrasound. Eur J Radiol 51(Suppl):S19–S23

    CrossRef  PubMed  Google Scholar 

  57. Takeshita J, Masago K, Kato R et al (2015) CT-guided fine-needle aspiration and core needle biopsies of pulmonary lesions: a single-center experience with 750 biopsies in Japan. AJR Am J Roentgenol 204:29–34. doi:10.2214/AJR.14.13151

    CrossRef  PubMed  Google Scholar 

  58. Tatli S, Gerbaudo VH, Mamede M et al (2010) Abdominal masses sampled at PET/CT-guided percutaneous biopsy: initial experience with registration of prior PET/CT images. Radiology 256:305–311. doi:10.1148/radiol.10090931

    CrossRef  PubMed  Google Scholar 

  59. Turtulici G, Orlandi D, Corazza A et al (2014) Percutaneous radiofrequency ablation of benign thyroid nodules assisted by a virtual needle tracking system. Ultrasound Med Biol 40:1447–1452. doi:10.1016/j.ultrasmedbio.2014.02.017

    CrossRef  PubMed  Google Scholar 

  60. Venkatesan AM, Kadoury S, Abi-Jaoudeh N et al (2011) Real-time FDG PET guidance during biopsies and radiofrequency ablation using multimodality fusion with electromagnetic navigation. Radiology 260:848–856. doi:10.1148/radiol.11101985

    CrossRef  PubMed  PubMed Central  Google Scholar 

  61. Wallach D, Toporek G, Weber S et al (2014) Comparison of freehand-navigated and aiming device-navigated targeting of liver lesions. Int J Med Robot 10:35–43. doi:10.1002/rcs.1505

    CAS  CrossRef  PubMed  Google Scholar 

  62. Wood BJ, Locklin JK, Viswanathan A et al (2007) Technologies for guidance of radiofrequency ablation in the multimodality interventional suite of the future. J Vasc Interv Radiol 18:9–24. doi:10.1016/j.jvir.2006.10.013

    CrossRef  PubMed  PubMed Central  Google Scholar 

  63. Wu H, Wilkins LR, Ziats NP et al (2014) Real-time monitoring of radiofrequency ablation and postablation assessment: accuracy of contrast-enhanced US in experimental rat liver model. Radiology 270:107–116. doi:10.1148/radiol.13121999

    CrossRef  PubMed  PubMed Central  Google Scholar 

  64. Zaidi H, Montandon M-L, Alavi A (2010) The clinical role of fusion imaging using PET, CT, and MR imaging. Magn Reson Imaging Clin N Am 18:133–149. doi:10.1016/j.mric.2009.09.010

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Mauri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mauri, G., Solbiati, L. (2016). Virtual Navigation and Interventional Procedures. In: Prada, F., Solbiati, L., Martegani, A., DiMeco, F. (eds) Intraoperative Ultrasound (IOUS) in Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-25268-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25268-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25266-7

  • Online ISBN: 978-3-319-25268-1

  • eBook Packages: MedicineMedicine (R0)