Skip to main content

On the Effectiveness of Evidence-Based Terminological Decision Trees

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9384))

Abstract

Concept learning methods for Web ontologies inspired by Inductive Logic Programming and the derived inductive models for class-membership prediction have been shown to offer viable solutions to concept approximation, query answering and ontology completion problems. They generally produce human-comprehensible logic-based models (e.g. terminological decision trees) that can be checked by domain experts. However, one difficulty with these models is their inability to provide a way to measure the degree of uncertainty of the predictions. A framework for inducing terminological decision trees extended with evidential reasoning has been proposed to cope with these problems, but it was observed that the prediction procedure for these models tends to favor cautious predictions. To overcome this limitation, we further improved the algorithms for inducing/predicting with such models. The empirical evaluation shows promising results also in comparison with major related methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook, 2nd edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  2. Rettinger, A., Lösch, U., Tresp, V., d’Amato, C., Fanizzi, N.: Mining the semantic web. Statistical learning for nextgeneration knowledge bases. Data Min. Knowl. Discov. 24, 613–662 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. J. Web Sem. 9, 71–81 (2011)

    Article  Google Scholar 

  5. Lehmann, J., Haase, C.: Ideal downward refinement in the EL description logic. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 73–87. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Lehmann, J.: DL-Learner: learning concepts indescription logics. J. Mach. Learn. Res. 10, 2639–2642 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Fanizzi, N., d’Amato, C., Esposito, F.: Induction of concepts in web ontologies through terminological decision trees. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part I. LNCS, vol. 6321, pp. 442–457. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Rizzo, G., d’Amato, C., Fanizzi, N., Esposito, F.: Towards evidence-based terminological decision trees. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part I. CCIS, vol. 442, pp. 36–45. Springer, Heidelberg (2014)

    Google Scholar 

  9. Klir, J.: Uncertainty and Information. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  10. Sentz, K., Ferson, S.: Combination of evidence in Dempster-Shafer theory. Sandia Report SAND2002-0835 (2002)

    Google Scholar 

  11. Denoeux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. 25, 804–813 (1995)

    Article  Google Scholar 

  12. Sutton-Charani, N., Destercke, S., Denoeux, T.: Classification trees based on belief functions. In: Denoeux, T., Masson, M.-H. (eds.) Belief Functions: Theory and Applications. LNCS, vol. 164, pp. 77–84. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Dubois, D., Prade, H.: On the combination of evidence in various mathematical frameworks. In: Flamm, J., Luisi, T. (eds.) Reliability Data Collection and Analysis. Eurocourses, vol. 3, pp. 213–241. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  14. Rizzo, G., d’Amato, C., Fanizzi, N., Esposito, F.: Assertion prediction with ontologies through evidence combination. In: Bobillo, F., et al. (eds.) URSW 2008-2010/UniDL 2010. LNCS, vol. 7123, pp. 282–299. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Acknowledgments

This work fulfills the research objectives and has been partially funded by the projects LogIn project (PII Industry 2015), and Vincente project (POR Regione Puglia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rizzo, G., d’Amato, C., Fanizzi, N. (2015). On the Effectiveness of Evidence-Based Terminological Decision Trees. In: Esposito, F., Pivert, O., Hacid, MS., Rás, Z., Ferilli, S. (eds) Foundations of Intelligent Systems. ISMIS 2015. Lecture Notes in Computer Science(), vol 9384. Springer, Cham. https://doi.org/10.1007/978-3-319-25252-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25252-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25251-3

  • Online ISBN: 978-3-319-25252-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics