Skip to main content

Social Control of Space and Metrization

  • Chapter
  • First Online:
  • 390 Accesses

Part of the book series: SpringerBriefs in History of Science and Technology ((BRIEFSHIST))

Abstract

A new form of spatial knowledge develops in early civilizations, in which the allocation and management of land necessitates an administrative control of space and leads to the formation of new means of knowledge representation. The chapter discusses the transformation of human societies from bands and tribes to city-states and empires, which brought about new forms of the social control of space, involving techniques of surveying, writing, and drawing, which became the precondition for the development of geometry and thereby shaped the further development of spatial thinking. The example of Mesopotamia is presented, where practices of area determination are documented on clay tablets from the late fourth millennium BCE on. In the following millennia the system of representations developed in the context of administrative and educational institutions. It is argued that this resulted in a metrization of cognitive models of space, albeit confined, at the time, to a small group of experts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Koch and Schiefenhövel (2009), Koch (1984, 49–54). See also Thiering and Schiefenhövel (forthcoming).

  2. 2.

    Wulf Schiefenhövel, personal communication. See also Michel (1983). Other instances of the mythical control of space may be identified in the spatial practices and the spatial thinking reported for the Bororo of the Brazilian central plateau—see the account of the socio-spatial structure of the village Kejara given by Lévi-Strauss (1955, 244–277) —and for the Temne in northern Sierra Leone (Little John 1963).

  3. 3.

    These professions are documented in administrative sources of ancient Mesopotamian cities; they are, e.g., explicitly mentioned in texts from the city of Šuruppag (modern Fara) dating from around 2540 BCE, see Robson (2008, 31). In the proto-literate period, many of these functions were fulfilled by the temple-managers, see Høyrup (1994, 55).

  4. 4.

    Damerow and Lefèvre (1996, 396–397). See also Renn and Valleriani (2014, in particular 13–18).

  5. 5.

    We here follow the middle chronology, for which the third dynasty of Ur roughly coincides with the 21st century BCE and Hammurabi’s reign dates from 1792 to 1750 BCE.

  6. 6.

    See, e.g., Lyons (1927).

  7. 7.

    The earliest evidence for the use of measuring ropes in Egypt is probably the Egypt numeral ‘100’, which has the shape of a coil of rope and is attested in the Second Dynasty (ca. 2890 – ca. 2686 BC) (see Clagett 1992–1999, 752), but probably dates from an earlier time. I am grateful to Jens Høyrup for pointing this out to me.

  8. 8.

    Consider, in particular, the Jiu zhang suan shu ( Nine Chapters on Arithmetical Techniques) , containing, among other things, problems on the calculation of field areas and probably dating to the first century CE. (Guo 1993, 79–213. For editions in European languages, see Vogel 1968; Shen et al. 1999; Chemla and Guo 2004.)

  9. 9.

    On Aztec , Inca , and Maya city planning see, for instance, the respective entries in Selin (1997). On the difficulty to reconstruct the mathematical knowledge involved, see Ascher (1986), Vinette (1986), and other contributions in Closs (1986).

  10. 10.

    Surveying and the determination of field sizes in ancient Mesopotamia and the emergence of Babylonian geometry are discussed in more detail by Damerow (forthcoming); see further Damerow (2001), Høyrup (2002), and Robson (2008).

  11. 11.

    Damerow (2001, 247).

  12. 12.

    See the entry for éš [rope] in the electronic Pennsylvania Sumerian Dictionary at http://psd.museum.upenn.edu/epsd/nepsd-frame.html. Accessed February 7, 2012.

  13. 13.

    See Damerow (2012, 170). For a discussion of the concept of glottographic writing , see Hyman (2006).

  14. 14.

    This way of determining areas remained in use through millennia; it is documented much later in Egypt (Neugebauer 1934, 123), and was also used by the Roman agrimensores (Folkerts 1992, 324). The method may have been used independently by Aztec surveyors; for a reconstruction and discussion of Aztec methods of determining area, see Williams and del Carmen Jorge y Jorge (2008).

  15. 15.

    See Gandz (1929), who distinguishes a geometry of lines and a geometry of angles .

  16. 16.

    For a discussion of possible roles of these texts in the surveyors’ tradition, see Damerow (2001, 271). A brief outline of the development of Sumerian and Babylonian mathematical practices in their institutional contexts is presented by Høyrup (1994, 4–9).

  17. 17.

    Robson (2008, 75–83).

  18. 18.

    Schooltexts from 2700 BCE onwards document the need to learn the relation between unit areas and combinations of unit lengths; see the discussion by Damerow (forthcoming, Sect. 3.3).

  19. 19.

    Owing to the lack of a cipher zero and of a separation between whole units and fractions, the use of the positional system implied the difficulty of keeping track of the order of magnitude for reconversion into the traditional units.

  20. 20.

    See the discussion of tablet YBC 4675 by Damerow (2001, 280–286).

  21. 21.

    Volumes were usually measured in area units, assuming them to be of a conventionally fixed thickness equal to a unit measure of length. If necessary, the thickness was ‘raised’, i.e., the area was multiplied to obtain a volume of different thickness (Høyrup 2002, 22, 36). The results were sometimes converted to measures of capacity; see Friberg (2007, 196–198).

  22. 22.

    See Damerow (2012).

  23. 23.

    Gandz (1929, 453).

References

  • Ascher, M. (1986). Mathematical ideas of the Incas. In M. P. Closs (Ed.), Native American mathematics (pp. 261–289). Austin, TX: University of Texas Press.

    Google Scholar 

  • Chemla, K., & Guo, S. (Eds.). (2004). Les neuf chapitres: Le classique mathématique de la Chine anciennne et ses commentaires. Paris: Dunod.

    Google Scholar 

  • Closs, M. P. (Ed.). (1986). Native American mathematics. Austin, TX: University of Texas Press.

    Google Scholar 

  • Clagett, M. (1992–1999). Ancient Egyptian science. Philadelphia, PA: American Philosophical Society.

    Google Scholar 

  • Damerow, P. (2001). Kannten die Babylonier den Satz des Pythagoras? Epistemologische Anmerkungen zur Natur der Babylonischen Mathematik. In J. Høyrup & P. Damerow (Eds.), Changing Views on Ancient Near Eastern Mathematics, BBVO 19 (pp. 219–310). Berlin: Reimer.

    Google Scholar 

  • Damerow, P. (2012). The origins of writing and arithmetic. In J. Renn (Ed.), The globalization of knowledge in history (pp. 153–173). Berlin: Edition Open Access.

    Google Scholar 

  • Damerow, P. (forthcoming). The impact of notation systems: From the practical knowledge of surveyors to Babylonian geometry. In M. Schemmel (Ed.), Spatial thinking and external representation: Towards an historical epistemology of space. Berlin: Edition Open Access.

    Google Scholar 

  • Damerow, P., & Lefèvre, W. (1996). Tools of science. In P. Damerow, Abstraction and representation. Essays on the cultural evolution of thinking (pp. 395–404). Dordrecht: Kluwer.

    Google Scholar 

  • Folkerts, M. (1992). Mathematische Probleme im Corpus agrimensorum. In O. Behrends & L. C. Colognesi (Eds.), Die römische Feldmeßkunst: Interdisziplinäre Beiträge zu ihrer Bedeutung für die Zivilisationsgeschichte Roms (pp. 311–336). Göttingen: Vandenhoeck & Ruprecht.

    Google Scholar 

  • Friberg, J. (2007). Amazing traces of a Babylonian origin in Greek mathematics. New Jersey: World Scientific.

    Book  Google Scholar 

  • Gandz, S. (1929). The origin of angle-geometry. ISIS, 12(1929), 452–481.

    Article  Google Scholar 

  • Guo, S. (Ed.). (1993). Zhongguo ke xue ji shu dian ji tong hui: Shu xue juan yi. Zhengzhou: Henan jiaoyu chubanshe.

    Google Scholar 

  • Høyrup, J. (1994). In measure, number, and weight: Studies in mathematics and culture. Albany, NY: State University of New York Press.

    Google Scholar 

  • Høyrup, J. (2002). Length, width, surfaces: A portrait of old Babylonian mathematics and its kins. New York: Springer.

    Google Scholar 

  • Hyman, M. D. (2006). Of glyphs and glottography. Language and Communication, 26(3–4), 231–249.

    Article  Google Scholar 

  • Koch, G. (1984). Maligdam. Ethnographische Notizen über einen Siedlungsbereich im oberen Eipomek-Tal, zentrales Bergland von Irian Jaya, West-Neuguinea, Indonesien. Mensch, Kultur und Umwelt im Zentralen Bergland von West-Neuguinea (No. 15). Berlin: Reimer.

    Google Scholar 

  • Koch, G., & Schiefenhövel, W. (2009). Eipo (West-Neuguinea, Zentrales Hochland)—Neubau des sakralen Männerhauses in Munggona. DVD, Produktionsjahr: 1974, first published in 1979; IWF Bestellnummer/Bandzählung E 2475.

    Google Scholar 

  • Lévi-Strauss, C. (1955). Tristes tropiques. Paris: Plon.

    Google Scholar 

  • Little John, J. (1963). Temne space. Anthropological Quarterly, 36(1), 1–17.

    Article  Google Scholar 

  • Lyons, H. (1927). Ancient surveying instruments. The Geographical Journal, 69(2), 132–139.

    Article  Google Scholar 

  • Michel, T. (1983). Interdependenz von Wirtschaft und Umwelt in der Eipo-Kultur von Moknerkon. Bedingungen für Produktion und Reproduktion bei einer Dorfschaft im zentralen Bergland von Irian Jaya, West-Neugiunea, Indonesien. Mensch, Kultur und Umwelt im zentralen Bergland von West-Neuguinea (No. 11). Berlin: Reimer

    Google Scholar 

  • Neugebauer, O. (1934). Vorlesungen über Geschichte der antiken mathematischen Wissenschaften, Vol 1: Vorgriechische Mathematik. Berlin: Springer.

    Google Scholar 

  • Renn, J., & Valleriani, M. (2014). Elemente einer Wissensgeschichte der Architektur. In J. Renn, W. Osthues, & H. Schlimme (Eds.), Wissensgeschichte der Architektur, Vol. 1: Vom Neolithikum bis zum Alten Orient (pp. 7–53). Berlin: Edition Open Access.

    Google Scholar 

  • Robson, E. (2008). Mathematics in ancient Iraq. A social history. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Selin, H. (Ed.). (1997). Encyclopaedia of the history of science, technology and medicine in non-western cultures. Dordrecht: Kluwer.

    Google Scholar 

  • Shen, K., Crossley, J. N., & Lun, A. W. C. (Eds.). (1999). The nine chapters on the mathematical art: Companion and commentary. Oxford: Oxford University Press.

    Google Scholar 

  • Thiering, M., & Schiefenhövel, W. (forthcoming). Spatial concepts in non-literate societies: Language and practice in Eipo and Dene Chipewyan. In M. Schemmel (Ed.), Spatial thinking and external representation: Towards an historical epistemology of space. Berlin: Edition Open Access.

    Google Scholar 

  • Vinette, F. (1986). In search of Mesoamerican geometry. In M. P. Closs (Ed.), Native American mathematics (pp. 387–407). Austin, TX: University of Texas Press.

    Google Scholar 

  • Vogel, K. (Ed.). (1968). Neun Bücher arithmetischer Technik: Ein chinesisches Rechenbuch für den praktischen Gebrauch aus der frühen Hanzeit (202 v. Chr. bis 9 n. Chr.). Vieweg, Braunschweig

    Google Scholar 

  • Williams, B.J., & del Carmen Jorge y Jorge, M. (2008). Aztec arithmetic revisited: Land-area algorithms and Acolhua congruence arithmetic. Science, 320(72), 13–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Schemmel .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Schemmel, M. (2016). Social Control of Space and Metrization. In: Historical Epistemology of Space. SpringerBriefs in History of Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25241-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25241-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25239-1

  • Online ISBN: 978-3-319-25241-4

  • eBook Packages: HistoryHistory (R0)

Publish with us

Policies and ethics