Contact Angle Measurements and Surface Characterization Techniques



Contact angle measurement has been an indispensable tool for surface characterization and wetting study due to its simplicity and versatility. In this chapter, major measurement techniques for static contact angle, sliding angle, and advancing/receding angle are overviewed. Critical procedural details including sessile-drop dispensing, drop size, drop profile capturing, and analysis are highlighted and discussed. Best practices on measuring sliding and advancing/receding angles are recommended with support of publications from leading researchers. It is our hope that the techniques described within will be used as guidelines for the research community.


Contact angle measurement Goniometer Static contact angle Advancing contact angle Receding contact angle Sliding angle Contact angle hysteresis Wilhelmy plate technique Captive bubble method Tilting plate method 


  1. 1.
    Young T (1805) An essay on the cohesion of fluids. Phil Trans R Soc London 95:65–87CrossRefGoogle Scholar
  2. 2.
    Pease DC (1945) The significance of the contact angle in relation to the solid surface. J Phys Chem 49:107–110CrossRefGoogle Scholar
  3. 3.
    Morra M, Occhiello E, Garbossi F (1990) Knowledge about polymer surfaces from contact angle measurements. Adv Colloid Interface Sci 32:79–116CrossRefGoogle Scholar
  4. 4.
    Rayleigh L (1890) On the tension of water surfaces, clean and contaminated, investigated by the method of ripples. Phil Mag 30:386–400CrossRefGoogle Scholar
  5. 5.
    Bartell FE, Wooley AD (1933) Solid–liquid–Air contact angles and their dependence upon the surface condition of the solid. J Am Chem Soc 55:3518–3527CrossRefGoogle Scholar
  6. 6.
    Marmur A, Bittoun E (2009) When Wenzel and Cassie are right: reconciling local and global considerations. Langmuir 25:1277–1281CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Bartell FE, Hatch GB (1934) Wetting characteristics of galena. J Phys Chem 39:11–24CrossRefGoogle Scholar
  9. 9.
    Zisman WA (1964) Relation of the equilibrium contact angle to liquid and solid constitution. In: Fowkes F (ed) Contact angle, wettability, and adhesion, advances in chemistry. American Chemical Society, Washington, DC, pp 1–51CrossRefGoogle Scholar
  10. 10.
    Good RJ (1977) Surface free energy of solids and liquids. Thermodynamics, molecular forces, and structures. J. Colloid Interface Sci 59:398–419CrossRefGoogle Scholar
  11. 11.
    Drelich JW (2013) Guidelines to measurements of reproducible contact angles using a sessile-drop technique. Surf Innov 1:248–254CrossRefGoogle Scholar
  12. 12.
    Shuttleworth R, Bailey GJ (1948) The spreading of a liquid over a rough surface. Discuss Faraday Soc 3:16–22CrossRefGoogle Scholar
  13. 13.
    Zhao H, Law KY, Sambhy V (2011) Fabrication, surface properties and origin of superoleophobicity for a model textured surface. Langmuir 27:5927–5935CrossRefGoogle Scholar
  14. 14.
    Crittenden JC, Trussell RR, Hand DW, Howe KJ, Tchobanoglous G (2012) MWH’s water treatment: principles and design, 3rd edn. John Wiley & Sons, HobokenCrossRefGoogle Scholar
  15. 15.
    Extrand CW, Moon SI (2010) When sessile drop Are No longer small: transitions from spherical to fully flattened. Langmuir 25:11815–11822CrossRefGoogle Scholar
  16. 16.
    Kranias S Effect of drop volume on static contact angles. Technical note 310e. Kruss GmbH, FranceGoogle Scholar
  17. 17.
    Marmur A (2006) Soft contact: measurement and interpretation of contact angles. Soft Matter 2:12–17CrossRefGoogle Scholar
  18. 18.
    Extrand CW, Moon SI (2010) Contact angles of liquid drops on super hydrophobic surfaces: understanding the role of flattening of drops. Langmuir 26:17090–17099CrossRefGoogle Scholar
  19. 19.
    Zhang X, Shi F, Niu J, Jiang Y, Wang Z (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18:621–633CrossRefGoogle Scholar
  20. 20.
    Srinivasan S, McKinley GH, Cohen RE (2011) Assessing the accuracy of contact angle measurements for sessile drops on liquid-repellent surfaces. Langmuir 27:13582–13589CrossRefGoogle Scholar
  21. 21.
    Bashforth F, Adam JC (1883) An attempt to test the theories of capillary action by comparing the theoretical and measured forces of drops of fluid. University Press, Cambridge, UKGoogle Scholar
  22. 22.
    Amirfazli A, Kwok DY, Gaydos J, Neumann AW (1998) Line tension measurements through drop size dependence of contact angle. J Colloid Interface Sci 205:1–11CrossRefGoogle Scholar
  23. 23.
    Marmur A (1997) Line tension and the intrinsic contact angle in solid–liquid–fluid systems. J Colloid Interface Sci 186:462–466CrossRefGoogle Scholar
  24. 24.
    Cansoy CE (2014) The effect of drop size on contract angle measurements of superhydrophobic surfaces. RSC Adv 4:1197–1203CrossRefGoogle Scholar
  25. 25.
    Woodward RP contact angle measurements using the drop shape method.
  26. 26.
    Mack GL (1935) The determination of contact angles from measurements of the dimensions of small bubbles and drops. I. The spheroidal segment method for acute angles. J Phys Chem 40:159–167CrossRefGoogle Scholar
  27. 27.
    Mark GL, Lee DA (1935) The determination of contact angles from measurements of the dimensions of small bubbles and drops II. The sessile drop method for obtuse angles. J Phys Chem 40:169–176CrossRefGoogle Scholar
  28. 28.
    Neumann AW, Good RJ (1979) Techniques of measuring contact angles. Springer, Surface and Colloid Science, pp 31–91Google Scholar
  29. 29.
    Sklodowska A, Wozniak M, Matlakowska R (1999) The method of contact angle measurements and estimation of work of adhesion in bioleaching of metals. Biol Proc Online 1:114–121CrossRefGoogle Scholar
  30. 30.
    Lubarda VA, Talke KA (2011) Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model. Langmuir 27:10705–10713CrossRefGoogle Scholar
  31. 31.
    Rotenberg Y, Boruvka L, Neumann AW (1983) Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J Colloid Interface Sci 93:169–183CrossRefGoogle Scholar
  32. 32.
    del Rio OI, Neumann AW (1997) Axisymmetric drop shape analysis: computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops. J Colloid Interface Sci 196:136–147CrossRefGoogle Scholar
  33. 33.
    Skinner FK, Rotenberg Y, Neumann AW (1989) Contact angle measurements from the contact diameter of sessile drops by means of a modified axisymmetric drop shape analysis. J Colloid Interface Sci 130:25–34CrossRefGoogle Scholar
  34. 34.
    Moy E, Cheng P, Policova Z, Treppo S, Kwok D, Mack DR, Sherman PM, Neumann AW (1991) Measurement of contact angles from the maximum diameter of Non-wetting drops by means of a modified axisymmetric drop shape analysis. Colloids Surf 58:215–227CrossRefGoogle Scholar
  35. 35.
    Kalantarian A, David R, Neumann AW (2009) Methodology for high accuracy contact angle measurement. Langmuir 25:14146–14154CrossRefGoogle Scholar
  36. 36.
    del Rio OI, Kwok DY, Wu R, Alvarez JM, Neumann AW (1998) Contact angle measurements by axisymmetric drop shape analysis and an automated polynomial fit program. Colloids and Surfaces A: Physicochem Eng Aspects 143:197–210CrossRefGoogle Scholar
  37. 37.
    Bateni A, Susnar SS, Amirfazli A, Neumann AW (2003) A high-accuracy polynomial fitting approach to determine contact angles. Colloids and Surfaces A: Physicochem Eng Aspects 219:215–231CrossRefGoogle Scholar
  38. 38.
    Stalder AF, Kulik G, Sage D, Barbieri L, Hoffmann P (2006) A snake-based approach to accurate determination of both contact points and contact angles. Colloids and Surfaces A: Physicochem Eng Aspects 286:92–103CrossRefGoogle Scholar
  39. 39.
    Xu ZN (2014) An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis. Rev Sci Instrum 85:125107CrossRefGoogle Scholar
  40. 40.
    Xu ZN, Wang SY (2015) A highly accurate dynamic contact angle algorithm for drops on inclined surface based on ellipse-fitting. Rev Sci Instrum 86:025104CrossRefGoogle Scholar
  41. 41.
    Zhang X, Shi F, Yu X, Liu H, Fu Y, Wang Z, Jiang J, Li X (2004) Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. J Am Chem Soc 126:3064–3065CrossRefGoogle Scholar
  42. 42.
    Zhang W, Hallstrom B (1990) Membrane characterization using contact angle technique 1. Methodology of the captive bubble technique. Desalination 70:1–12CrossRefGoogle Scholar
  43. 43.
    Drelich J, Miller JD, Good RJ (1996) The effect of drop (bubble) size on advancing and receding contact angles for heterogeneous and rough solid surfaces as observed with sessile-drop and captive-bubble techniques. J Colloid Interface Sci 179:37–50CrossRefGoogle Scholar
  44. 44.
    Furmidge CGL (1962) Studies at phase interfaces 1. The sliding of liquid drops on solid surfaces and a theory for spray retention. J Colloid Interface Sci 17:309–324CrossRefGoogle Scholar
  45. 45.
    Pierce E, Carmona FJ, Amirfazli A (2008) Understanding of sliding and contact angle results in tilted plate experiments. Colloids and Surfaces A: Physicochem Eng Aspects 323:73–82CrossRefGoogle Scholar
  46. 46.
    Murase H, Nanishi K, Kogure H, Fujibayashi T, Tamura K, Haruta N (1994) Interaction between heterogeneous surfaces of polymers and water. J Appl Poly Sci 54:2051–2062CrossRefGoogle Scholar
  47. 47.
    Rios PF, Dodiuk H, Kenig S, McCarthy S, Dotan A (2007) The effect of polymer surface on the wetting and adhesion of liquid systems. J Adhesion Sci Technol 3–4:227–242CrossRefGoogle Scholar
  48. 48.
    Macdougall G, Ockrent C (1942) Surface energy relations in liquid/solid systems. 1. The adhesion of liquids to solids and a new method of determining the surface tension of liquids. Proc R Soc Lond A 180:151–173CrossRefGoogle Scholar
  49. 49.
    Krasovitski B, Marmur A (2005) Drops down the hill. Theoretical study of limiting contact angles and the hysteresis range on a tilted plate. Langmuir 21:3881–3885CrossRefGoogle Scholar
  50. 50.
    Wilhelmy L (1863) Ueber die Abhängigkeit der Capillaritäts-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers. Ann Phys 119:117–217Google Scholar
  51. 51.
  52. 52.
    Liakos IL, Newman RC, McAlpine E, Alexander MR (2007) A study of the resistance of SAMs on aluminum to acidic and basic solutions using dynamic contact angle measurements. Langmuir 23:995–999CrossRefGoogle Scholar
  53. 53.
    Martin DA, Vogler EA (1991) Immersion depth independent computer analysis of Wilhelmy balance hysteresis curves. Langmuir 7:422–429CrossRefGoogle Scholar
  54. 54.
    Lander LM, Siewierski LM, Brittain WJ, Vogler EA (1993) A systematic comparison of contact angle methods. Langmuir 9:2237–2239CrossRefGoogle Scholar
  55. 55.
    Kanungo M, Mettu S, Law KY, Daniel S (2014) Effect of roughness geometry on wetting and de-wetting of PDMS surfaces. Langmuir 30:7358–7368CrossRefGoogle Scholar
  56. 56.
    Hayes RA, Ralston J (1993) Force liquid movement on low energy surfaces. J Colloid Interface Sci 159:429–438CrossRefGoogle Scholar
  57. 57.
    Kleingartner JA, Srinivasan S, Mabry JM, Cohen RE, McKinley GH (2013) Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting transitions on nonwetting surfaces. Langmuir 29:13396–13406CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Founder & CEO at Research and Innovative SolutionsPenfieldUSA
  2. 2.School of Engineeing, Mechanical and Nuclear EngineeringVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations