Skip to main content

Life-Time Prediction of Multicomponent Polymeric Materials

  • Chapter
  • First Online:
Photochemical Behavior of Multicomponent Polymeric-based Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 26))

Abstract

Since the continuous emerging of new technologies and outdoor applications of polymers and polymer based materials, and thus a dire need in increasing their lifetime service quality, the number of methods predicting aging has also experienced growth. Most of such methods are reported on natural and artificial aging and may be based on accelerated aging predictions, different damage models and empirical formulas. The present chapter is a systematization of literature studies focused on discovering new means for accurate linking of laboratory and field exposure results, which represent the actual and future main challenges in estimating and assessing quality and service lifetime of polymeric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perrin, F.X., Merlatti, C., Aragon, E., Margaillan, A.: Degradation study of polymer coating: improvement in coating weatherability testing and coating failure prediction. Prog. Org. Coat. 64, 466–473 (2009)

    Article  Google Scholar 

  2. Merlatti, C., Perrin, F., Aragon, E., Margaillan, A.: Natural and artificial weathering characteristics of stabilized acrylic-urethane paints. Polym. Degrad. Stab. 93, 896–903 (2008)

    Article  Google Scholar 

  3. Rajakumar, K., Sarasvathy, V., Thamarai, C.A., Chitra, R., Vijayakumar, C.: Natural weathering studies of polypropylene. J. Polym. Environ. 17, 191–202 (2009)

    Article  Google Scholar 

  4. Larché, J.F., Bussière, P.O., Gardette, J.L.: Characterisation of accelerated ageing devices for prediction of the service life of acrylic-melamine/urethane thermosets. Polym. Degrad. Stab. 96, 1530–1536 (2011)

    Article  Google Scholar 

  5. Wang, Q.H., Zhang, G.Y., Zhang, X.L., Wang, X.M., Li, H.: PC out-door aging relationship research in different typical climates. Eng. Plast. Appl. 21, 49–51 (1993)

    Google Scholar 

  6. Davis, A.: Effect of climate on the weathering of polyacetal. Polym. Degrad. Stab. 3, 187–198 (1981)

    Article  Google Scholar 

  7. Khelidj, N., Colin, X., Audouin, L., Verdu, J.: A simplified approach for the lifetime prediction of PE in nuclear environments. Nucl. Instrum. Methods B 236, 88–94 (2005)

    Article  Google Scholar 

  8. Colin, X., Monchy, L.C., Audouin, L., Verdu, J.: Lifetime prediction of polyethylene in nuclear plants. Nucl. Instrum. Methods B 265, 251–255 (2007)

    Article  Google Scholar 

  9. Pinel, B.: A methodology to predict the life duration of polymers used in nuclear power stations. Industrial needs and their approach. Nucl. Instrum. Methods B 151, 471–476 (1999)

    Article  Google Scholar 

  10. Bellenger, V., Ganem, M., Mortaigne, B., Verdu, J.: Lifetime prediction in the hydrolytic ageing of polyesters. Polym. Degrad. Stab. 49, 91–97 (1995)

    Article  Google Scholar 

  11. Pickett, J.E., Coyle, D.J.: Hydrolysis kinetics of condensation polymers under humidity aging conditions. Polym. Degrad. Stab. 98, 1311–1320 (2013)

    Article  Google Scholar 

  12. Brown, R.: Predictive techniques and models for durability tests. Polym. Test 14, 403–414 (1995)

    Article  Google Scholar 

  13. Celina, M., Gillen, K., Assink, R.: Accelerated aging and lifetime prediction: review of non-Arrhenius behaviour due to two competing processes. Polym. Degrad. Stab. 90, 395–404 (2005)

    Article  Google Scholar 

  14. Gillen, K., Bernstein, R., Clough, R., Celina, M.: Lifetime predictions for semicrystalline cable insulation materials: I. Mechanical properties and oxygen consumption measurements on EPR materials. Polym. Degrad. Stab. 91, 2146–2156 (2006)

    Article  Google Scholar 

  15. Kahlen, S., Wallner, G., Lang, R.: Aging behavior and lifetime modeling for polycarbonate. Sol. Energy 84, 755–762 (2010)

    Article  Google Scholar 

  16. Pickett, J.E., Sargent, J.R., Blaydes, H.A., Babbie, N.: Effects of temperature on the weathering lifetime of coated polycarbonate. Polym. Degrad. Stab. 94, 1085–1091 (2009)

    Article  Google Scholar 

  17. Ram, A., Zilber, O., Kenig, S.: Life expectation of polycarbonate. Polym. Eng. Sci. 25, 535–540 (1985)

    Article  Google Scholar 

  18. Mehr, Y.M., Driel, W.D.V., Jansen, K.M.B., Deeben, P., Zhang, G.Q.: Lifetime assessment of Bisphenol-A Polycarbonate (BPA-PC) plastic lens, used in LED-based products. Microelectron. Reliab. (2014). doi:10.1016/j.microrel.2013.09.009

    Google Scholar 

  19. Gillen, K., Celina, M.: The wear-out approach for predicting the remaining lifetime of materials. Polym. Degrad. Stab. 71, 15–30 (2000)

    Article  Google Scholar 

  20. Gillen, K., Celina, M., Bernstein, R., Shedd, M.: Lifetime predictions of EPR materials using the wear-out approach. Polym. Degrad. Stab. 91, 3197–3207 (2006)

    Article  Google Scholar 

  21. Malik, J., Tuan, D., Spirk, E.: Lifetime prediction for hindered amine light stabilizer-stabilized low-density polyethylene and polypropylene. Polym. Degrad. Stab. 47, 1–8 (1995)

    Article  Google Scholar 

  22. Guseva, O., Brunner, S., Richner, P.: Service life prediction for aircraft coatings. Polym. Degrad. Stab. 82, 1–13 (2003)

    Article  Google Scholar 

  23. Evans, M.: A statistical degradation model for the service life prediction of aircraft coatings: with a comparison to an existing methodology. Polym. Test 31, 46–55 (2012)

    Article  Google Scholar 

  24. Hoàng, E.M., Lowe, D.: Lifetime prediction of a blue PE100 water pipe. Polym. Degrad. Stab. 93, 1496–1503 (2008)

    Article  Google Scholar 

  25. Celina, M., Trujillo, A., Gillen, K., Minier, L.: Chemiluminescence as a condition monitoring method for thermal aging and lifetime prediction of an HTPB elastomer. Polym. Degrad. Stab. 91, 2365–2374 (2006)

    Article  Google Scholar 

  26. Hakkarainen, M., Albertsson, A.: Indicator products: a new tool for lifetime prediction of polymeric materials. Biomacromolecules 6, 775–779 (2005)

    Article  Google Scholar 

  27. Croll, S., Hinderliter, B., Liu, S.: Statistical approaches for predicting weathering degradation and service life. Prog. Org. Coat. 55, 75–87 (2006)

    Article  Google Scholar 

  28. Croll, S., Hinderliter, B.: A framework for predicting the service lifetime of composite polymeric coatings. J. Mater. Sci. 43, 6630–6641 (2008)

    Article  Google Scholar 

  29. Croll, S., Hinderliter, B.: Estimating service lifetimes in weathering: an optimistic view. J. Coat. Technol. Res. 4, 217–230 (2007)

    Article  Google Scholar 

  30. Shah, C.S., Patni, M.J., Pandya, M.V.: Accelerated aging and life time prediction analysis of polymer composites: a new approach for a realistic prediction using cumulative damage theory. Polym. Test 13, 295–322 (1994)

    Article  Google Scholar 

  31. Liu, H., Zhou, M., Zhou, Y., Wang, S., Li, G., Jiang, L., Dan, Y.: Aging life prediction system of polymer outdoors constructed by ANN. 1. Lifetime prediction for polycarbonate. Polym. Degrad. Stab. 105, 218–236 (2014)

    Article  Google Scholar 

  32. Maxwell, A.S., Broughton, W.R., Dean, G., Sims, G.D: Review of accelerated ageing methods and lifetime prediction techniques for polymeric materials, NPL Report DEPC MPR 016, National Physics Laboratory, Teddington, Middlesex, United Kingdom, Queen’s Printer for Scotland (2005)

    Google Scholar 

  33. ISO 877: Plastics—methods of exposure to direct weathering, to weathering using glass-filtered daylight, and to intensified weathering by daylight using Fresnel mirrors (1994)

    Google Scholar 

  34. ASTM D4364-02 Standard practice for performing outdoor accelerated weathering tests of plastics using concentrated sunlight

    Google Scholar 

  35. ASTM D1435-99 Standard practice for outdoor weathering of plastics

    Google Scholar 

  36. ASTM G24-05 Standard practice for conducting exposures to daylight filtered through glass

    Google Scholar 

  37. Robinson, J., Poulsen, K.V., Högström, P.A., Linder, A., Burkhard, H., Kobilsek, M., Gemmel, A.: Comparison of standard and UV test methods for the ageing of cables. In: Proceedings of the 60th IWCS conference, Charlotte (NC) (2011)

    Google Scholar 

  38. ASTM D2565-99 Standard practice for xenon arc exposure of plastics intended for outdoor applications

    Google Scholar 

  39. ISO 4892 part 2: Plastics—methods of exposure to laboratory light sources—Part 2: xenon-arc sources (2004)

    Google Scholar 

  40. IEC 60068-2-9 Environmental testing, Part 2: tests—guidance for solar radiation testing

    Google Scholar 

  41. ASTM D1499-99 Standard practice filtered open-flame carbon-arc type exposures of plastics

    Google Scholar 

  42. ISO 4892 Part 4: Plastics—methods of exposure to laboratory light sources—part 4: open-flame carbon-arc lamps (2004)

    Google Scholar 

  43. Diffey, B.L.: Sources and measurement of ultraviolet radiation. Methods 28, 4–13 (2002)

    Article  Google Scholar 

  44. Skiest, I.: Handbook of Adhesives, 2nd edn, pp. 12–17. Litton Educational Publishing, New York (1977)

    Google Scholar 

  45. Benson, L.M.: Polymer Blends: A Comprehensive Review, pp. 65–108. Carl Hanser Verlag, Munich (2007)

    Google Scholar 

  46. Rosu, D., Varganici, C.-D., Rosu, L.: Thermal degradation of thermosetting blends. In: Visakh, P.M., Arao, Y. (eds.) Thermal Degradation of Polymer Blends, Composites and Nanocomposites, pp. 21–23. Springer International Publishing, Switzerland (2015)

    Google Scholar 

  47. Rosu, D., Rosu, L., Mustata, F., Varganici, C.-D.: Effect of UV radiation on some semiinterpenetrating polymer networks based on polyurethane and epoxy resin. Polym. Degrad. Stab. 97, 1261–1269 (2012)

    Article  Google Scholar 

  48. Varganici, C.D., Rosu, L., Rosu, D., Simionescu, B.C.: Miscibility studies of some semiinterpenetrating polymer networks based on an aromatic polyurethane and epoxy resin. Compos. B Eng. 50, 273–278 (2013)

    Article  Google Scholar 

  49. Rosu, D., Rosu, L., Varganici, C.-D.: The thermal stability of some semi-interpenetrated polymer networks based on epoxy resin and aromatic polyurethane. J. Anal. Appl. Pyrol. 100, 103–110 (2013)

    Article  Google Scholar 

  50. DIN 6174:1979-01 Farbmetrische Bestimmung von Farbabständen bei Körperfarben nach der CIELAB-Formel

    Google Scholar 

  51. Varganici, C.-D., Rosu, L, Mocanu, O.M., Rosu, D.: Influence of poly(vinyl alcohol) on cellulose photochemical stability in cryogels during UV irradiation. J Photochem. Photobiol. A Chem. 297, 20–30 (2015)

    Article  Google Scholar 

  52. Rosu, D., Bodîrlău, R., Teacă, C.-A., Rosu, L., Varganici, C.-D.: Epoxy and succinic anhydride functionalized soybean oil for wood protection against UV light action. J. Clean. Prod. 112(1), 1175–1183 (2015)

    Google Scholar 

  53. Tocháček, J., Vrátníčova, Z.: Polymer life-time prediction: the role of temperature in UV accelerated ageing of polypropylene and its copolymers. Polym. Test 36, 82–87 (2014)

    Article  Google Scholar 

  54. Gu, X., Stanley, D., Byrd, W.E., Dickens, B., Vaca-Trigo, I., Meeker, W.Q., Nguyen, T., Chin, J.W., Martin, J.W.: Linking accelerated laboratory test with outdoor performance results for a model epoxy coating system. In: Martin, J.W., Ryntz, R.A., Chin, J., Dickie, R.A. (eds.) Service Life Prediction of Polymeric Materials. Global Perspectives, pp. 1–26. Springer Science + Business Media, New York (2009)

    Google Scholar 

  55. Kinmonth, R.A., Norton, J.E.: Effect of spectral energy distribution on degradation of organic coatings. J. Coat. Technol. 49(633), 37 (1977)

    Google Scholar 

  56. Fischer, R.M., Ketola, W.D., Murray, W.P.: Inherent variability in accelerated exposure methods. Prog. Org. Coat. 19, 165–179 (1991)

    Article  Google Scholar 

  57. Searle, N.D., Giesecke, P., Kinmonth, R., Hirt, R.C.: Ultraviolet spectra distributions and aging characteristics of xenon arcs and filters. Appl. Opt. 3, 963–966 (1964)

    Article  Google Scholar 

  58. Martin, J.W., Nguyen, T., Byrd, E., Embree, N.: Estimation of absorbed photolytic dosage and quantum yield using UV–Vis and FTIR spectroscopies. In: Proceedings of the American Chemical Society, PSME, vol. 82, Spring Meeting, San Francisco, CA, 26–30 March 2000

    Google Scholar 

  59. Vaca-Trigo, I., Meeker, W.Q.: A statistical model for linking field and laboratory exposure results for a model coating. In: Proceedings of the International Symposium on Service Life Prediction: Global Perspectives, Key Largo, FL (2006)

    Google Scholar 

  60. Bunsen, R.W., Roscoe, H.E.: Photochemische untersuchungen. Ann. Phys. 108(2), 193–273 (1859)

    Article  Google Scholar 

  61. Martin, J.W., Chin, J.W., Nguyen, T.: Reciprocity law experiments in polymeric photodegradation: a critical review. Prog. Org. Coat. 47, 292–311 (2003)

    Article  Google Scholar 

  62. Scheiner, J.: Application de la photographie à la determination des grandeurs stallaire. Bull Comité Permanent Int Execut Photogr Carte Ciel 1, 227–246 (1889)

    Google Scholar 

  63. de Abney, W.W.: On a failure of the law in photography that when the products of the intensity of the light acting and of the time of exposure are equal, equal amounts of chemical action will be produced. Proc. R. Soc. Lond. 54, 143–147 (1893)

    Article  Google Scholar 

  64. de Abney, W.W.: The failure in a photographic law with very intense light. Photogr. J. 18, 302 (1894)

    Google Scholar 

  65. Englisch, E.: Über die wirkung intermittierender belichtungen auf bromsilbergelatine. Photogr. Korresp. 36, 109 (1899)

    Google Scholar 

  66. de Abney, W.W.: Chemical action and exposure. Photogr. J. 18, 56 (1893)

    Google Scholar 

  67. Schwarzschild, K.: On the law of reciprocity for bromide of silver gelatin. Astrophys. J. 11, 89 (1900)

    Article  Google Scholar 

  68. Vohl, P.: Surface photovoltage effects in titanium dioxide films. Photogr. Sci. Eng. 13(3), 120 (1969)

    Google Scholar 

  69. Egerton, T.A., King, C.J.: The influence of light intensity on photoactivity in TiO2 pigmented systems. J. Oil Colour Chem. Assoc. 62, 386–391 (1979)

    Google Scholar 

  70. Tollin, G., Kearns, D.R., Calvin, M.: Electrical properties of organic solids. I. Kinetics and mechanism of conductivity of metalo–free phthalocyanine. J. Chem. Phys. 32(4), 1013–1019 (1960)

    Article  Google Scholar 

  71. Mees, C.E.K., James, T.H.: The Theory of the Photographic Process. Macmillan, New York (1966)

    Google Scholar 

  72. Mees, C.E.K.: The Theory of the Photographic Process, p. 249. Macmillan, New York (1942)

    Google Scholar 

  73. Hemmerich, K.J.: Accelerated aging. General aging theory and simplified protocol for accelerated aging of medical devices. Med. Plast. Biomater 5, 16–23 (1998)

    Google Scholar 

  74. Hukins, D.W.L., Mahomed, A., Kukureka, S.N.: Accelerated aging for testing polymeric biomaterials and medical devices. Med. Eng. Phys. 30, 1270–1274 (2008)

    Article  Google Scholar 

  75. ASTM: Standard practice/guide for the mechanical characterization of lumbar nucleus devices: Report WK4863 (2005)

    Google Scholar 

  76. Verdu, J., Colin, X., Fayolle, B., Audouin, L.: Methodology of lifetime prediction in polymer aging. J. Test. Eval. 35, 1–8 (2007)

    Google Scholar 

  77. Laidler, K.J.: Reaction kinetics. In: Homogeneous Gas Reactions, vol. 1, pp. 1–41. Pergamon, Oxford

    Google Scholar 

  78. Budrugeac, P.: Lifetime prediction for polymers via the temperature of initial decomposition. J. Therm. Anal. Calorim. 65, 309–312 (2001)

    Article  Google Scholar 

  79. Dakin, T.W.: Electrical insulation deterioration treated as a chemical rate phenomenon. AIEE Trans. 67, 113–122 (1948)

    Google Scholar 

  80. Dakin, T.W.: Electrical insulation deterioration. Electrotechnology 66, 124 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian-Dragos Varganici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Varganici, CD., Rosu, D., Rosu, L. (2016). Life-Time Prediction of Multicomponent Polymeric Materials. In: Rosu, D., Visakh P. M. (eds) Photochemical Behavior of Multicomponent Polymeric-based Materials. Advanced Structured Materials, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-25196-7_8

Download citation

Publish with us

Policies and ethics