Skip to main content

Optical Performance of Organic Distributed Feedback Lasers Based on Holographic Polymer Dispersed Liquid Crystals

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 26))

Abstract

 The development and progress of holographic polymer dispersed liquid crystals used in organic distributed feedback lasers are presented in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yang, D.-K., Shin-Tson, W.: Fundamentals of Liquid Crystal Devices, 2nd edn. Wiley, London (2014)

    Google Scholar 

  2. de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Oxford University Press, New York (1993)

    Google Scholar 

  3. Yeh, P., Gu, C.: Optics of Liquid Crystal Displays. Wiley, Hoboken (2009)

    Google Scholar 

  4. Singh, S., Dunmur, D.A.: Liquid Crystals Fundamentals. World Scientific, Singapore (2002)

    Book  Google Scholar 

  5. Yang, D.-K.: Reflective cholesteric liquid crystal displays. In: Bhowmik, A.K., Li, Z., Bos, P.J. (eds.) Mobile Displays: Technology and Applications. Wiley, London (2008)

    Google Scholar 

  6. Yokoyama, H.: Chapter 6. In: Collings, P.J., Patel, J.S. (eds.) Handbook of Liquid Crystal Research. Oxford University Press, New York (1997)

    Google Scholar 

  7. Ma, J., Xuan, L.: Towards nanoscale molecular switch-based liquid crystal displays. Displays 34, 293–300 (2013)

    Article  Google Scholar 

  8. Ma, J., Li, Y., White, T., Urbas, A., Li, Q.: Light-driven nanoscale chiral molecular switch: full range color phototuning. Chem. Commun. 46, 3463–3465 (2010)

    Article  Google Scholar 

  9. Chien, L.-C., Lu, S.-Y.: Tunable cholesteric color. In: SPIE Newsroom (2009). doi:10.1117/1112.1200901.1201482

  10. Wu, S.-T., Yang, D.-K.: Reflective Liquid Crystal Displays. Wiley, New York (2001)

    Google Scholar 

  11. Yang, D.-K., Huang, X.-Y., Zhu, Y.-M.: Bistable cholesteric reflective displays: materials and drive schemes. Annu. Rev. Mater. Sci. 27, 117–146 (1997)

    Article  Google Scholar 

  12. Ge, Z., Wu, S.-T.: Transflective Liquid Crystal Displays. Wiley, London (2010)

    Book  Google Scholar 

  13. Atkuri, H.M., Leong, E.S.P., Hwang, J., Palermo, G., Si, G., Wong, J.-M., Chien, L.-C., Ma, J., Zhou, K., Liu, Y.J., Luciano, D.S.: Developing novel liquid crystal technologies for display and photonic applications. Displays 36, 21–29 (2015)

    Article  Google Scholar 

  14. Yang, D.-K., Chien, L.-C., Doane, J.W.: Cholesteric liquid crystal/polymer dispersion for haze free light shutters. Appl. Phys. Lett. 60, 3102–3104 (1992)

    Article  Google Scholar 

  15. Ren, H., Wu, S.T.: Reflective reversed-mode polymer stabilized cholesteric texture light switches. J. Appl. Phys. 92, 797–800 (2002)

    Article  Google Scholar 

  16. Ma, J., Shi, L., Yang, D.-K.: Bistable polymer stabilized cholesteric texture light shutter. Appl. Phys. Express 3, 021702 (2010)

    Article  Google Scholar 

  17. Huang, C.-Y., Chih, Y., Ke, S.: Effect of chiral dopant and monomer concentrations on the electro-optical response of a polymer stabilized cholesteric texture cell. Appl. Phys. B 86, 123–127 (2007)

    Article  Google Scholar 

  18. Ma, J., Zheng, Z., Liu, Y., Xuan, L.: Electro-optical properties of polymer stabilized cholesteric liquid crystal film. Chin. Phys. B 20, 024212 (2011)

    Article  Google Scholar 

  19. Doane, J.W., Vaz, N.A., Wu, B.G., Zumer, S.: Field controlled light scattering from nematic microdroplets. Appl. Phys. Lett. 48, 269–271 (1986)

    Article  Google Scholar 

  20. Drzaic, P.S.: Polymer dispersed nematic liquid crystal for large area displays and light valves. J. Appl. Phys. 60, 2142–2148 (1986)

    Article  Google Scholar 

  21. Sutherland, R.L., Natarajan, L.V., Tondiglia, V.P.: Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes. Chem. Mater. 5, 1533–1538 (1993)

    Article  Google Scholar 

  22. Sutherland, R.L., Tondiglia, V.P., Natarajan, L.V., Bunning, T.J., Adams, W.W.: Electrically switchable volume gratings in polymer-dispersed liquid crystals. Appl. Phys. Lett. 64, 1074–1076 (1994)

    Article  Google Scholar 

  23. Domash, L., Chen, Y.-M., Gozewski, C., Haugsjaa, P., Oren, M.: Electronically switchable Bragg gratings for large scale NXN fiber optic crossconnects. In: Proceedings of SPIE, vol. 3010, pp. 214–228 (1997)

    Google Scholar 

  24. Sutherland, R.L., Natarajan, L.V., Tondiglia, V.P., Siwecki, S.A., Chandra, S., Bunning, T.J.: Switchable holograms for displays and telecommunications. In: Proceedings of SPIE, vol. 4463, pp. 1–10 (2001)

    Google Scholar 

  25. Liu, Y.J., Sun, X.W., Liu, J.H., Dai, H.T., Xu, K.S.: A polarization insensitive 2X2 optical switch fabricated by liquid crystal–polymer composite. Appl. Phys. Lett. 86, 041115 (2005)

    Article  Google Scholar 

  26. Li, M.S., Wu, S.-T., Fuh, A.Y.-G.: Superprism phenomenon based on holographic polymer dispersed liquid crystal films. Appl. Phys. Lett. 88, 091109 (2006)

    Article  Google Scholar 

  27. Kakiuchida, H., Tazawa, M., Yoshimura, K., Ogiwara, A.: Optical diffractometry of anisotropic holographic structure composed of liquid crystal and polymer phases with extended Bragg modes. Thin Solid Films 571, 431–436 (2013)

    Article  Google Scholar 

  28. Yuan, H., Colegrove, J., Hu, G., Fiske, T., Lewis, A., Gunther, J., Silverstein, L., Bowley, C., Grawford, G., Chien, L., Kelly, J.: HPDLC color reflective displays. In: Proceedings of SPIE, vol. 3690, pp. 196–206 (1999)

    Google Scholar 

  29. Park, M.S., Kim, E.H., Kim, B.K.: Applications of holographic PDLC for full color display. J. Polym. Eng. 28, 169–178 (2008)

    Article  Google Scholar 

  30. Domash, L., Grawford, G., Ashmead, A., Smith, R., Popovich, M., Storey, J.: Holographic PDLC for photonic applications. In: Proceedings of SPIE, vol. 4107, pp. 46–58 (2000)

    Google Scholar 

  31. Escuti, M.J., Kossyrev, P., Crawford, G.P., Fiske, T.G., Colegrove, J., Silverstein, L.D.: Expanded viewing-angle reflection from diffuse holographic-polymer dispersed liquid crystal films. Appl. Phys. Lett. 77, 4262–4264 (2000)

    Article  Google Scholar 

  32. Date, M., Takeuchi, Y., Kato, K.: A memory-type holographic polymer dispersed liquid crystal (HPDLC) reflective display device. J. Phys. D Appl. Phys. 31, 2225 (1998)

    Article  Google Scholar 

  33. Wang, K., Zheng, J., Gao, H., Lu, F., Sun, L., Yin, S., Zhuang, S.: Tri-color composite volume H-PDLC grating and its application to 3D color autostereoscopic display. Opt. Express 23, 31436–31445 (2015)

    Article  Google Scholar 

  34. Sio, L.D., Tedesco, A., Tabirian, N., Umeton, C.: Opticall controlled holographic beam splitter. Appl. Phys. Lett. 97, 183507 (2010)

    Article  Google Scholar 

  35. Crawford, G.P.: Electrically switchable Bragg gratings. Opt. Photonics News 14, 54–59 (2003)

    Google Scholar 

  36. Sio, L.D., Tabiryan, N., Caputo, R., Veltri, A., Umeton, C.: POLICRYPS structures as switchable optical phase modulators. Opt. Express 16, 7619–7624 (2008)

    Article  Google Scholar 

  37. Sio, L.D., Veltria, A., Caputo, R., Luca, A.D., Strangi, G., Bartolino, R., Umeton, C.P.: POLICRYPS composite structures: realization, characterization and exploitation for electro-optical and all-optical applications. Liq. Cryst. Rev. 1, 2–19 (2013)

    Article  Google Scholar 

  38. Bunning, T.J., Natarajan, L.V., Tondiglia, V.P., Sutherland, R.L.: Holographic polymer-dispersed liquid crystals (H-PDLCs). Annu. Rev. Mater. Sci. 30, 83–115 (2000)

    Article  Google Scholar 

  39. Ma, J., Huang, W., Xuan, L., Yokoyama, H.: Holographic polymer dispersed liquid crystals: from materials and morphologies to applications. In: Jain, V., Kokil, A. (eds.) Optical Properties of Functional Polymers and Nano Engineering Applications. CRC, Boca Raton, FL (2014)

    Google Scholar 

  40. Zheng, Z., Song, J., Liu, Y., Guo, F., Ma, J., Xuan, L.: Single-step exposure for two-dimensional electrically-tuneable diffraction grating based on polymer dispersed liquid crystal. Liq. Cryst. 35, 489–499 (2008)

    Article  Google Scholar 

  41. Zheng, Z., Ma, J., Li, W., Song, J., Liu, Y., Xuan, L.: Improvements in morphological and electro-optical properties of polymer-dispersed liquid crystal grating using a highly fluorine-substituted acrylate monomer. Liq. Cryst. 35, 885–893 (2008)

    Article  Google Scholar 

  42. Wenger, B., Tetreault, N., Welland, M.E., Friend, R.H.: Mechanically tunable conjugated polymer distributed feedback lasers. Appl. Phys. Lett. 97, 193303 (2010)

    Article  Google Scholar 

  43. Vieu, C., Carcenac, F., Pepin, A., Chen, Y., Mejias, M., Lebib, A., Manin-Ferlazzo, L., Couraud, L., Launois, H.: Electron beam lithography: resolution limits and applications. Appl. Surf. Sci. 164, 111–117 (2000)

    Article  Google Scholar 

  44. Chou, S.Y., Krauss, P.R., Renstrom, P.J.: Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996)

    Article  Google Scholar 

  45. Vita, F., Lucchetta, D.E., Castagna, R., Criante, L., Simoni, F.: Large-area photonic structures in freestanding films. Appl. Phys. Lett. 91, 103114 (2007)

    Article  Google Scholar 

  46. Kim, E., Woo, J., Kim, B.: Diffraction grating in a holographic polymer dispersed liquid crystal based on polyurethane acrylate. Liq. Cryst. 34, 79–85 (2007)

    Article  Google Scholar 

  47. Zheng, Z., Yao, L., Zhang, R., Zou, Z., Liu, Y., Liu, Y., Xuan, L.: Thermo-stability of acrylate based holographic polymer dispersed liquid crystal gratings. J. Phys. D Appl. Phys. 42, 115504 (2009)

    Article  Google Scholar 

  48. Huang, W., Deng, S., Li, W., Peng, Z., Liu, Y., Hu, L., Xuan, L.: A polarization-independent and low scattering transmission grating for a distributed feedback cavity based on holographic polymer dispersed liquid crystal. J. Opt. 13, 085501 (2011)

    Article  Google Scholar 

  49. Vardanyan, K.K., Qi, J., Eakin, J.N., Sarkar, M.D., Crawford, G.P.: Polymer scaffolding model for holographic polymer-dispersed liquid crystals. Appl. Phys. Lett. 81, 4736–4738 (2002)

    Article  Google Scholar 

  50. Sarkar, M.D., Qi, J., Crawford, G.P.: Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings. Polymer 43, 7335–7344 (2002)

    Article  Google Scholar 

  51. Sarkar, M.D., Gill, N.L., Whitehead, J.B., Crawford, G.P.: Effect of monomer functionality on the morphology and performance of the holographic transmission gratings recorded on polymer dispersed liquid crystals. Macromolecules 36, 630–638 (2003)

    Article  Google Scholar 

  52. Kim, B.K., Jang, M.W., Park, H.C., Jeong, H.M., Kim, E.Y.: Effect of graphene doping of holographic polymer-dispersed liquid crystals. J. Polym. Sci. Part A Polym. Chem. 50, 1418–1423 (2012)

    Article  Google Scholar 

  53. Liu, Y., Dai, H., Leong, E., Teng, J., Sun, X.: Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect. Appl. Phys. B 104, 659–663 (2011)

    Article  Google Scholar 

  54. Park, M.S., Cho, Y.H., Kim, B.K., Jang, J.S.: Fabrication of reflective holographic gratings with polyurethane acrylate (PUA). Curr. Appl. Phys. 2, 249–252 (2002)

    Article  Google Scholar 

  55. Park, M.S., Kim, B.K., Kim, J.C.: Reflective mode of HPDLC with various structures of polyurethane acrylates. Polymer 44, 1595–1602 (2003)

    Article  Google Scholar 

  56. Park, M.S., Kim, B.K.: Transmission holographic gratings produced using networked polyurethane acrylates with various functionalities. Nanotechnology 17, 2012–2017 (2006)

    Article  Google Scholar 

  57. Sutherland, R.L.: Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model. J. Opt. Soc. Am. B Opt. Phys. 19, 2995–3003 (2002)

    Article  Google Scholar 

  58. Sutherland, R.L., Natarajan, L.V., Tondiglia, V.P., Chandra, S., Shepherd, C.K., Brandelik, D.M., Siwecki, S.A., Bunning, T.J.: Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations. J. Opt. Soc. Am. B Opt. Phys. 19, 3004–3012 (2002)

    Article  Google Scholar 

  59. Bowley, C.C., Crawford, G.P., Yuan, H.: Reflection from dual-domains in a holographically-formed polymer-dispersed liquid crystal material. Appl. Phys. Lett. 74, 3096–3098 (1999)

    Article  Google Scholar 

  60. Birnkrant, M.J.: Combining holographic patterning and block copolymer self-assembly to fabricate hierarchical volume gratings. In: Material Science and Engineering, Thesis of Drexel University, Philadelphia (2009)

    Google Scholar 

  61. Natarajan, L.V., Shepherd, C.K., Brandelik, D.M., Sutherland, R.L., Chandra, S., Tondiglia, V.P., Timlin, D., Bunning, T.J.: Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization. Chem. Mater. 15, 2477–2484 (2003)

    Article  Google Scholar 

  62. Caputo, R., De Sio, L., Veltri, A., Umeton, C., Sukhov, A.V.: Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material. Opt. Lett. 29, 1261–1263 (2004)

    Article  Google Scholar 

  63. Drevensek-Olenik, I., Jazbinsek, M., Sousa, M.E., Fontecchio, A.K., Crawford, G.P., Eopie, M.: Structural transitions in holographic polymer-dispersed liquid crystals. Phys. Rev. E 69, 051703 (2004)

    Article  Google Scholar 

  64. Natarajan, L.V., Brown, D.P., Wofford, J.M., Tondiglia, V.P., Sutherland, R.L., Lloyd, P., Jakubiak, R., Vaia, R., Bunning, T.J.: Visible light initiated thiol-ene based reflection H-PDLCs. In: Proceedings of SPIE, p. 59360F (2005)

    Google Scholar 

  65. Wofford, J.M., Natarajan, L.V., Tondiglia, V.P., Sutherland, R.L., Lloyd, P.F., Siwecki, S.A., Bunning, T.J.: Holographic polymer dispersed liquid crystal (HPDLC) transmission gratings formed by visible light initiated thiol-ene photopolymerization. In: Proceedings of SPIE, p. 63320Q (2006)

    Google Scholar 

  66. White, T.J., Liechty, W.B., Natarajan, L.V., Tondiglia, V.P., Bunning, T.J., Guymon, C.A.: The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs). Polymer 47, 2289–2298 (2006)

    Article  Google Scholar 

  67. Jakubiak, R., Brown, D.P., Natarajan, L.V., Tondiglia, V., Lloyd, P., Sutherland, R.L., Bunning, T.J., Vaia, R.A.: Influence of morphology on the lasing behavior of pyrromethene 597 in a holographic polymer dispersed liquid crystal reflection grating. In: Proceedings of SPIE, p. 63220A (2006)

    Google Scholar 

  68. Jakubiak, R., Bunning, T.J., Vaia, R.A., Natarajan, L.V., Tondiglia, V.P.: Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approch for active photonic bandgap materials. Adv. Mater. 15, 241–244 (2003)

    Article  Google Scholar 

  69. Natarajan, L.V., Brown, D.P., Wofford, J.M., Tondiglia, V.P., Sutherland, R.L., Loyd, P.F., Bunning, T.J.: Holographic polymer dispersed liquid crystal reflection gratings formed by visible ligh initiated thiol-ene polymerization. Polymer 47, 4411–4420 (2006)

    Article  Google Scholar 

  70. Pu, H., Yin, D., Gao, B., Gao, H., Dai, H., Liu, J.: Dynamic characterizations of high diffraction efficiency in volume Bragg grating formed by holographic photopolymerization. J. Appl. Phys. 106, 083111 (2009)

    Article  Google Scholar 

  71. Huang, W., Liu, Y., Diao, Z., Yang, C., Yao, L., Ma, J., Xuan, L.: Theory and characteristics of holographic polymer dispersed liquid crystal transmission grating with scaffolding morphology. Appl. Opt. 51, 4013–4020 (2012)

    Article  Google Scholar 

  72. Peng, H., Chen, G., Ni, M., Yan, Y., Zhuang, J., Roy, V., Li, R.K., Xie, X.: Classical photopolymerization kinetics, exceptional gelation, and improved diffraction efficiency and driving voltage in scaffolding morphological H-PDLCs afforded using a photoinitibitor. Polym. Chem. 6, 8259–8269 (2015)

    Article  Google Scholar 

  73. Caputo, R., Luca, A.D., Sio, L.D., Pezzi, L., Strangi, G., Umeton, C., Veltri, A., Asquini, R., d’Alessandro, A., Donisi, D., Beccherelli, R., Sukhov, A.V., Tabiryan, N.V.: POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications. J. Opt. 11, 024017 (2009)

    Google Scholar 

  74. Caputo, R., Veltri, A., Umeton, C., Sukhov, A.V.: Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings. J. Opt. Soc. Am. B Opt. Phys. 22, 735–742 (2005)

    Article  Google Scholar 

  75. Caputo, R., Sio, L.D., Veltri, A., Umeton, C., Sukhov, A.V.: Realization of POLICRYPS gratings: optical and electro-optical properties. Mol. Cryst. Liq. Cryst. 441, 111–129 (2005)

    Article  Google Scholar 

  76. Caputo, R., Trebisacce, I., Sio, L.D., Umeton, C.P.: Phase Modulator behavior of a wedge-shaped POLICRYPS diffraction grating. Mol. Cryst. and Liq. Cryst. 549, 29–36 (2011)

    Article  Google Scholar 

  77. Strangi, G., Barna, V., Caputo, R., De Luca, A., Versace, C., Scaramuzza, N., Umeton, C., Bartolino, R., Price, G.N.: Color-tunable organic microcavity laser array using distributed feedback. Phys. Rev. Lett. 94, 063903 (2005)

    Article  Google Scholar 

  78. Kogelnik, H., Shank, C.V.: Stimulated emission in a periodic structure. Appl. Phys. Lett. 18, 152–154 (1971)

    Article  Google Scholar 

  79. Siegman, A.E.: Lasers. University Science Press, Mill Valley (1986)

    Google Scholar 

  80. Kogelnik, H., Shank, C.V.: Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43, 2327–2335 (1972)

    Article  Google Scholar 

  81. Sakhno, O., Stumpe, J., Smirnova, T.: Distributed feedback dye laser holographically induced in improved organic–inorganic photocurable nanocomposites. Appl. Phys. B Lasers Opt. 103, 907–916 (2011)

    Article  Google Scholar 

  82. Tsutsumi, N., Nishida, H.: Tunable distributed feedback lasing with low threshold and high slope efficiency from electroluminescent conjugated polymer waveguide. Opt. Commun. 284, 3365–3368 (2011)

    Article  Google Scholar 

  83. Karnutsch, C., Gyrtner, C., Haug, V., Lemmer, U., Farrell, T., Nehls, B., Scherf, U., Wang, J., Weimann, T., Heliotis, G.: Low threshold blue conjugated polymer lasers with first-and second-order distributed feedback. Appl. Phys. Lett. 89, 201108 (2006)

    Article  Google Scholar 

  84. Karnutsch, C., Pflumm, C., Heliotis, G., Bradley, D., Wang, J., Weimann, T., Haug, V., Gärtner, C., Lemmer, U.: Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Appl. Phys. Lett. 90, 131104 (2007)

    Article  Google Scholar 

  85. Jakubiak, R., Natarajan, L.V., Tondiglia, V., He, G.S., Prasad, P.N., Bunning, T.J., Vaia, R.A.: Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals. Appl. Phys. Lett. 85, 6095–6097 (2004)

    Article  Google Scholar 

  86. Liu, Y.J., Sun, X.W., Elim, H.I., Ji, W.: Effect of liquid crystal concentration on the lasing properties of dye-doped holographic polymer-dispersed liquid crystal transmission gratings. Appl. Phys. Lett. 90, 011109 (2007)

    Article  Google Scholar 

  87. Lucchetta, D.E., Criante, L., Francescangeli, O., Simoni, F.: Light amplification by dye-doped holographic polymer dispersed liquid crystals. Appl. Phys. Lett. 84, 4893–4895 (2004)

    Article  Google Scholar 

  88. Criante, L., Lucchetta, D.E., Vita, F., Castagna, R., Simoni, F.: Distributed feedback all-organic microlaser based on holographic polymer dispersed liquid crystals. Appl. Phys. Lett. 94, 111114 (2009)

    Article  Google Scholar 

  89. Okamoto, K.: Fundamentals of Optical Waveguides, 2nd edn. Academic Press, Burlington (2010)

    Google Scholar 

  90. Hisao, V.K.S., Lu, C., He, G.S., Pan, M., Cartwright, A.N., Prasad, P.N., Jakubiak, R., Vaia, R.A., Bunning, T.J.: High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures. Opt. Express 13, 3787–3794 (2005)

    Article  Google Scholar 

  91. Jakubiak, R., Tondiglia, V.P., Natarajan, L.V., Sutherland, R.L., Lloyd, P., Bunning, T.J., Vaia, R.A.: Dynamic lasing from all-organic two-dimensional photonic crystals. Adv. Mater. 17, 2807–2811 (2005)

    Article  Google Scholar 

  92. Jakubiak, R., Tondiglia, V.P., Natarajan, L.V., Sutherland, R.L., Lloyd, P., Bunning, T.J.: Stimulated emission from pyrromethene 597 in holographic polymer dispersed liquid crystal structures. In: Proceedings of SPIE, pp. 202–207 (2005)

    Google Scholar 

  93. Jakubiak, R., Tondiglia, V.P., Natarajan, L.V., Lloyd, P.F., Sutherland, R.L., Vaia, R.A., Bunning, T.J.: Lasing of pyrromethene 597 in 2-D holographic polymer dispersed liquid crystals: influence of columnar conformation. In: Proceedings of SPIE, p. 72320K (2009)

    Google Scholar 

  94. Luo, D., Sun, X.W., Dai, H.T., Liu, Y.J., Yang, H.Z., Ji, W.: Two-directional lasing form a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals. Appl. Phys. Lett. 95, 151115 (2009)

    Article  Google Scholar 

  95. Coles, H., Morris, S.: Liquid-crystal lasers. Nat. Photonics 4, 676–685 (2010)

    Article  Google Scholar 

  96. Sakoda, K.: Enhanced light amplification due to group-velocity anomaly peculiar to two-and three-dimensional photonic crystals. Opt. Express 4, 167–176 (1999)

    Article  Google Scholar 

  97. Susa, N.: Threshold gain and gain-enhancement due to distributed-feedback in two-dimensional photonic-crystal lasers. J. Appl. Phys. 89, 815–823 (2001)

    Article  Google Scholar 

  98. Turnbull, G.A., Andrew, P., Barnes, W.L., Samuel, I.D.W.: Operating characteristics of a semiconducting polymer laser pumped by a microchip laser. Appl. Phys. Lett. 82, 313–315 (2003)

    Article  Google Scholar 

  99. Diao, Z., Deng, S., Huang, W., Xuan, L., Hu, L., Liu, Y., Ma, J.: Organic dual-wavelength distributed feedback laser empowered by dye-doped holography. J. Mater. Chem. 22, 23331–23334 (2012)

    Article  Google Scholar 

  100. Diao, Z., Huang, W., Peng, Z., Mu, Q., Liu, Y., Ma, J., Xuan, L.: Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal. Liq. Cryst. 41, 239–246 (2014)

    Article  Google Scholar 

  101. Huang, W., Diao, Z., Liu, Y., Peng, Z., Yang, C., Ma, J., Xuan, L.: Distributed feedback polymer laser with an external feedback structure fabricated by holographic polymerization technique. Org. Electron. 13, 2307–2311 (2012)

    Article  Google Scholar 

  102. Diao, Z., Xuan, L., Liu, L., Xia, M., Hu, L., Liu, Y., Ma, J.: A dual-wavelength surface-emitting distributed feedback laser from a holographic grating with an organic semiconducting gain and a doped dye. J. Mater. Chem. C 2, 6177–6182 (2014)

    Article  Google Scholar 

  103. Liu, L., Xuan, L., Zhang, G., Liu, M., Hu, L., Liu, Y., Ma, J.: Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer. J. Mater. Chem. C 3, 5566–5572 (2015)

    Article  Google Scholar 

  104. Huang, W., Diao, Z., Yao, L., Cao, Z., Liu, Y., Ma, J., Xuan, L.: Electrically tunable distributed feedback laser emission from scaffolding morphologic holographic polymer dispersed liquid crystal grating. Appl. Phys. Express 6, 022702 (2013)

    Article  Google Scholar 

  105. Diao, Z., Kong, L., Xuan, L., Ma, J.: Electrical control of the distributed feedback organic semiconductor laser based on holographic polymer dispersed liquid crystal grating. Org. Electron. 27, 101–106 (2015)

    Article  Google Scholar 

  106. Liu, L., Huang, W., Diao, Z., Peng, Z., Mu, Q.Q., Liu, Y., Yang, C., Hu, L., Xuan, L.: Low threshold of distributed feedback lasers based on scaffolding morphologic holographic polymer dispersed liquid crystal gratings: reduced losses through Forster transfer. Liq. Cryst. 41, 145–152 (2014)

    Article  Google Scholar 

  107. Takahashi, H., Naito, H.: Amplified spontaneous emission from fluorene-based copolymer wave guides. Thin Solid Films 477, 53–56 (2005)

    Article  Google Scholar 

  108. Kretsch, K.P., Belton, C., Lipson, S., Blau, W.J., Henari, F.Z., Rost, H., Pfeiffer, S., Teuschel, A., Tillmann, H., Horhold, H.-H.: Amplified spontaneous emission and optical gain spectra from stilbenoid and phenylene vinylene derivative model compounds. J. Appl. Phys. 86, 6155–6159 (1999)

    Article  Google Scholar 

  109. Tsutsumi, N., Kawahira, T., Sakai, W.: Amplified spontaneous emission and distributed feedback lasing from a conjugated compound in various polymer matrices. Appl. Phys. Lett. 83, 2533–2535 (2003)

    Article  Google Scholar 

  110. Forster, T.: In: 10th Spiers Memorial Lecture: Transfer Mechanisms of Electronic Excitation, Discussions of the Faraday Society, vol. 27, pp. 7–17 (1959)

    Google Scholar 

  111. May, B., Poteau, X., Yuan, D., Brown, R.G.: A study of a highly efficient resonance energy transfer between 7-N, N-diethylamino-4-methylcoumarin and 9-butyl-4-butylamino-1, 8-naphthalimide. Dyes Pigm. 42, 79–84 (1999)

    Article  Google Scholar 

  112. Liu, Y.J., Sun, X.W., Shum, P., Li, H.P., Mi, J., Ji, W.: Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings. Appl. Phys. Lett. 88, 061107 (2006)

    Article  Google Scholar 

  113. Huang, W., Liu, Y., Hu, L., Mu, Q., Peng, Z., Yang, C., Xuan, L.: Second-order distributed feedback polymer laser based on holographic polymer dispersed liquid crystal grating. Org. Electron. 14, 2299–2305 (2013)

    Article  Google Scholar 

  114. Liu, M., Liu, Y., Zhang, G., Liu, L., Diao, Z., Yang, C., Peng, Z., Yao, L., Ma, J., Xuan, L.: Improving conversion efficiency of organic distributed feedback laser by varying solvents of laser gain layer. Liq. Cryst. (2015). doi:10.1080/02678292.02672015.01116628

    Google Scholar 

  115. Telle, H.H., Urena, A.G., Donovan, R.J.: Laser Chemistry: Spectroscopy, Dynamics and Applications. Wiley, London (2007)

    Google Scholar 

  116. Duarte, F.J.: Tunable Laser Applications, 2nd edn. CRC Press, New York (2009)

    Google Scholar 

  117. Bruneau, D., Cazeneuve, H., Loth, C., Pelon, J.: Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement. Appl. Opt. 30, 3930–3937 (1991)

    Article  Google Scholar 

  118. He, X., Fang, X., Liao, C., Wang, D., Sun, J.: A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity. Opt. Express 17, 21773–21781 (2009)

    Article  Google Scholar 

  119. Luo, D., Sun, X.W., Dai, H.T., Demir, H.V., Yang, H.Z., Ji, W.: Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals. J. Appl. Phys. 108, 013106 (2010)

    Article  Google Scholar 

  120. Urbas, A., Tondiglia, V., Natarajan, L., Sutherland, R., Yu, H., Li, J.-H., Bunning, T.: Optically switchable liquid crystal photonic structures. J. Am. Chem. Soc. 126, 13580–13581 (2004)

    Article  Google Scholar 

  121. Liu, Y.J., Zheng, Y.B., Shi, J., Huang, H., Walker, T.R., Huang, T.J.: Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals. Opt. Lett. 34, 2351–2353 (2009)

    Article  Google Scholar 

  122. Tong, H.-P., Li, Y.-R., Lee, C.-R.: All-optically controllable distributed feedback laser in a dye-doped holographic polymerdispersed liquid crystal grating with a photoisomerizable dye. Opt. Express 18, 2613–2620 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, L., Xuan, L., Ma, J. (2016). Optical Performance of Organic Distributed Feedback Lasers Based on Holographic Polymer Dispersed Liquid Crystals. In: Rosu, D., Visakh P. M. (eds) Photochemical Behavior of Multicomponent Polymeric-based Materials. Advanced Structured Materials, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-25196-7_12

Download citation

Publish with us

Policies and ethics