Skip to main content

Brain-Computer Interfaces for Communication and Rehabilitation Using Intracortical Neuronal Activity from the Prefrontal Cortex and Basal Ganglia in Humans

  • Chapter
  • First Online:
Brain-Computer Interface Research

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 1149 Accesses

Abstract

Brain-computer interfaces (BCIs) can help individuals with central nervous system (CNS) deficits recover lost function by enabling new communication channels (Wolpaw et al. 2002; Hochberg et al. 2012; Collinger et al. 2013) or by inducing and guiding adaptive plasticity for rehabilitation (Daly and Sitaram 2012; Mukaino et al. 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • T. Aflalo, S. Kellis, C. Klaes, B. Lee, Y. Shi, K. Pejsa, K. Shanfield, S. Hayes-Jackson, M. Aisen, C. Heck, C. Liu, R.A. Andersen, Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 80(348), 906–910 (2015)

    Google Scholar 

  • B.Z. Allison, D.J. McFarland, G. Schalk, S.D. Zheng, M.M. Jackson, J.R. Wolpaw, Towards an independent brain-computer interface using steady state visual evoked potentials. Clin. Neurophysiol. 119, 399–408 (2008)

    Article  Google Scholar 

  • N. Birbaumer, A. Kübler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, I. Iversen, B. Kotchoubey, N. Neumann, H. Flor, The thought translation device (TTD) for completely paralyzed patients. IEEE Trans. Rehabil. Eng. 8, 190–193 (2000)

    Article  Google Scholar 

  • S. Bongard, A. Nieder. Basic mathematical rules are encoded by primate prefrontal cortex neurons. Proc. Natl. Acad. Sci. 107, 2277–82 (2010)

    Google Scholar 

  • C.B. Boulay, W.A. Sarnacki, J.R. Wolpaw, D.J. McFarland, Trained modulation of sensorimotor rhythms can affect reaction time. Clin. Neurophysiol. 122, 1820–1826 (2011)

    Article  Google Scholar 

  • P. Brown, Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov. Disord. 18, 357–363 (2003)

    Article  Google Scholar 

  • T.J. Buschman, E.L. Denovellis, C. Diogo, D. Bullock, E.K. Miller. Synchronous oscillatory neural ensembles for rules in the prefrontal cortex. Neuron 76, 838–46 (2012)

    Google Scholar 

  • J.L. Collinger, B. Wodlinger, J.E. Downey, W. Wang, E.C. Tyler-Kabara, D.J. Weber, A.J. McMorland, M. Velliste, M.L. Boninger, A.B. Schwartz, High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564 (2013)

    Article  Google Scholar 

  • J.J. Daly, R. Sitaram, BCI therapeutic applications for improving brain function, in Brain-Computer Interfaces: Principles and Practice, ed. by J.R. Wolpaw, E.W. Wolpaw (Oxford University Press, Oxford, 2012), pp. 351–362

    Google Scholar 

  • S. Everling, C.J. Tinsley, D. Gaffan, J. Duncan, Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nat. Neurosci. 5, 671–676 (2002)

    Article  Google Scholar 

  • L.A. Farwell, E. Donchin, Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523 (1988)

    Article  Google Scholar 

  • J.M. Fuster, G.E. Alexander, Neuron activity related to short-term memory. Science 173, 652–654 (1971)

    Article  Google Scholar 

  • P.S. Goldman-Rakic, Cellular basis of working memory. Neuron 14, 477–485 (1995)

    Article  Google Scholar 

  • O. Hikosaka, Y. Takikawa, R. Kawagoe, Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80, 953–978 (2000)

    Google Scholar 

  • L.R. Hochberg, D. Bacher, B. Jarosiewicz, N.Y. Masse, J.D. Simeral, J. Vogel, S. Haddadin, J. Liu, S.S. Cash, P. van der Smagt, J.P. Donoghue, Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375 (2012)

    Article  Google Scholar 

  • L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue, Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006)

    Article  Google Scholar 

  • C.F. Jacobson, Studies of cerebral functions in primates: I. The functions of the frontal association areas in monkeys. Comp. Psychol. Monogr. 13, 1–30 (1936)

    Google Scholar 

  • N. Jenkinson, P. Brown, New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci. 34, 611–618 (2011)

    Article  Google Scholar 

  • J.N. Kim, M.N. Shadlen, Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2, 176–185 (1999)

    Article  Google Scholar 

  • K. Kubota, H. Niki, Prefrontal cortical unit activity and delayed alternation performance in monkeys. J. Neurophysiol. 34, 337–347 (1971)

    Google Scholar 

  • A. A. Kühn, A. Kupsch, G.-H. Schneider, P. Brown, Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci. 23, 1956–1960 (2006)

    Google Scholar 

  • T. Lennert, J.C. Martinez-Trujillo, Prefrontal neurons of opposite spatial preference display distinct target selection dynamics. J. Neurosci. 33, 9520–9529 (2013)

    Article  Google Scholar 

  • E.C. Leuthardt, G. Schalk, J.R. Wolpaw, J.G. Ojemann, D.W. Moran, A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 1, 63–71 (2004)

    Article  Google Scholar 

  • D. Mendoza-Halliday, S. Torres, J.C. Martinez-Trujillo, Sharp emergence of feature-selective sustained activity along the dorsal visual pathway. Nat. Neurosci. 17, 1255–1262 (2014)

    Article  Google Scholar 

  • F. Middleton, P. Strick, Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn. (2000)

    Google Scholar 

  • E.K. Miller, C.A. Erickson, R. Desimone, Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154–5167 (1996)

    Google Scholar 

  • N. Mrachacz-Kersting, S.R. Kristensen, I.K. Niazi, D. Farina, Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J. Physiol. 590, 1669–1682 (2012)

    Article  Google Scholar 

  • M. Mukaino, T. Ono, K. Shindo, T. Fujiwara, T. Ota, A. Kimura, M. Liu, J. Ushiba, Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke. J. Rehabil. Med. 46, 378–382 (2014)

    Article  Google Scholar 

  • A. Parent, L. Hazrati, Functional anatomy of the basal ganglia. ii. the place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Res. Rev (1995)

    Google Scholar 

  • G. Pfurtscheller, C. Neuper, D. Flotzinger, M. Pregenzer, EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr. Clin. Neurophysiol. 103, 642–651 (1997)

    Article  Google Scholar 

  • F. Pichiorri, G. Morone, M. Petti, J. Toppi, I. Pisotta, M. Molinari, S. Paolucci, M. Inghilleri, L. Astolfi, F. Cincotti, D. Mattia, Brain-computer interface boosts motor imagery practice during stroke recovery. Ann. Neurol. 77, 851–865 (2015)

    Article  Google Scholar 

  • S. Ruiz, S. Lee, S.R. Soekadar, A. Caria, R. Veit, T. Kircher, N. Birbaumer, R. Sitaram, Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Hum. Brain Mapp. 34, 200–212 (2013)

    Article  Google Scholar 

  • A. Sajad, M. Sadeh, G.P. Keith, X. Yan, H. Wang, J.D. Crawford, Visual-motor transformations within frontal eye fields during head-unrestrained gaze shifts in the monkey. Cereb. Cortex (2014). doi:10.1093/cercor/bhu279

  • G. Schalk, E.C. Leuthardt, Brain computer interfaces using electrocorticographic (ECoG) signals. IEEE Rev. Biomed. Eng. 4, 140–154 (2011)

    Article  Google Scholar 

  • K. Shibata, T. Watanabe, Y. Sasaki, M. Kawato, Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334, 1413–1415 (2011)

    Article  Google Scholar 

  • J. Sulzer, S. Haller, F. Scharnowski, N. Weiskopf, N. Birbaumer, M.L. Blefari, A.B. Bruehl, L.G. Cohen, R.C. DeCharms, R. Gassert, R. Goebel, U. Herwig, S. LaConte, D. Linden, A. Luft, E. Seifritz, R. Sitaram, Real-time fMRI neurofeedback: progress and challenges. Neuroimage 76, 386–399 (2013)

    Article  Google Scholar 

  • S. Tremblay, F. Pieper, A. Sachs, J.C. Martinez-Trujillo, Attentional filtering of visual information by neuronal ensembles in the primate lateral prefrontal cortex. Neuron 85, 202–215 (2015)

    Article  Google Scholar 

  • M.J. Vansteensel, D. Hermes, E.J. Aarnoutse, M.G. Bleichner, G. Schalk, P.C. van Rijen, F.S.S. Leijten, N.F. Ramsey, Brain-computer interfacing based on cognitive control. Ann. Neurol. 67, 809–816 (2010)

    Google Scholar 

  • J.D. Wallis, K.C. Anderson, E.K. Miller. Single neurons in prefrontal cortex encode abstract rules. Nature 411, 953–6 (2001)

    Google Scholar 

  • W. Wang, J.L. Collinger, A.D. Degenhart, E.C. Tyler-Kabara, A.B. Schwartz, D.W. Moran, D.J. Weber, B. Wodlinger, R.K. Vinjamuri, R.C. Ashmore, J.W. Kelly, M.L. Boninger, An electrocorticographic brain interface in an individual with tetraplegia. PLoS ONE 8, e55344 (2013)

    Article  Google Scholar 

  • I.M. White, S. P. Wise. Rule-dependent neuronal activity in the prefrontal cortex. Exp. Brain Res. 126, 315–335 (1999)

    Google Scholar 

  • T. Wichmann, H. Bergman, M.R. DeLong, The primate subthalamic nucleus. I. Functional properties in intact animals. J. Neurophysiol. 72, 494–506 (1994)

    Google Scholar 

  • J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)

    Article  Google Scholar 

  • A.I. Yang, N. Vanegas, C. Lungu, K.A. Zaghloul, Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson’s disease. J. Neurosci. 34, 12816–12827 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chadwick B. Boulay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Boulay, C.B., Sachs, A.J. (2015). Brain-Computer Interfaces for Communication and Rehabilitation Using Intracortical Neuronal Activity from the Prefrontal Cortex and Basal Ganglia in Humans. In: Guger, C., Müller-Putz, G., Allison, B. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-25190-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25190-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25188-2

  • Online ISBN: 978-3-319-25190-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics