Skip to main content

The Changing Brain: Bidirectional Learning Between Algorithm and User

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

In 2013–2014 we have advanced our MRCP-based BCI by demonstrating: (1) the ability to detect movement intent during dynamic tasks; (2) better detection accuracy than conventional approaches by implementing the locality preserving projection (LPP) approach; (3) the ability to use a single channel for accurate detection; and (4) enhanced neuroplasticity by driving a robotic device in an online mode. To realize our final goal of an at home system, we have characterized alterations during single session use in our extracted signal when the user is undergoing complex learning or experiencing significant attentional shifts—all seriously affecting the detection of user intent. Learning enhances the variability of MRCP at specific recording sites while attention shifts result in a more global increase in signal variability. With the results presented, we are working towards an adaptive brain–computer interface where bidirectional learning (either user or algorithm) is possible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • K.K. Ang, C. Guan, K.S. Chua, B.T. Ang, C. Kuah, C. Wang, K.S. Phua, Z.Y. Chin, H. Zhang, Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5549–5552 (2010)

    Google Scholar 

  • T.V. Bliss, S.F. Cooke, Long-term potentiation and long-term depression: a clinical perspective. Clinics (Sao Paulo) 66(1), 3–17 (2011)

    Article  Google Scholar 

  • D. Broetz, C. Braun, C. Weber, S.R. Soekadar, A. Caria, N. Birbaumer, Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabil. Neural Repair. 24, 674–679 (2010)

    Article  Google Scholar 

  • F. Cincotti, F. Pichiorri, P. Arico, F. Aloise, F. Leotta, F. de Vico Fallani, R. Millan Jdel, M. Molinari, D. Mattia, EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 4112–4115 (2012)

    Google Scholar 

  • S.F. Cooke, T.V.P. Bliss, Plasticity in the human central nervous system. Brain 129, 1659–1673 (2006)

    Article  Google Scholar 

  • J.J. Daly, J.R. Wolpaw, Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 7, 1032–1043 (2008)

    Article  Google Scholar 

  • J.J. Daly, R. Cheng, J. Rogers, K. Litinas, K. Hrovat, M. Dohring, Feasibility of a new application of noninvasive Brain Computer Interface (BCI): a case study of training for recovery of volitional motor control after stroke. J. Neurol. Phys. Ther. 33, 203–211 (2009)

    Article  Google Scholar 

  • T. Demiralp, S. Karamursel, Y.E. Karakullukcu, N. Gokhan, Movement-related cortical potentials: their relationship to the laterality, complexity and learning of a movement. Int. J. Neurosci. 51, 153–162 (1990)

    Article  Google Scholar 

  • G. Dirnberger, C. Duregger, G. Lindinger, W. Lang, Habituation in a simple repetitive motor task: a study with movement-related cortical potentials. Clin. Neurophysiol. 115, 378–384 (2004)

    Article  Google Scholar 

  • M.J. Falvo, E.J. Sirevaag, J.W. Rohrbaugh, G.M. Earhart, Resistance training induces supraspinal adaptations: evidence from movement-related cortical potentials. Eur. J. Appl. Physiol. 109, 923–933 (2010)

    Article  Google Scholar 

  • D. Farina, A novel brain-computer interface for chronic stroke patients, Toledo, Spain (2012)

    Google Scholar 

  • Y. Hashimoto, J. Ushiba, EEG-based classification of imaginary left and right foot movements using beta rebound. Clin. Neurophysiol. (2013)

    Google Scholar 

  • D.O. Hebb, The organization of behavior: a neuropsychological theory (Lawrence Erlbaum Associates Inc, Mahwah, 1949)

    Google Scholar 

  • N. Jiang, L. Gizzi, N. Mrachacz-Kersting, K. Dremstrup, D. Farina, A brain computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clin. Neurophysiol. (2014)

    Google Scholar 

  • M. Jochumsen, I.K. Niazi, H. Rovsing, C. Rovsing, G.A.R. Nielsen, T.K. Andersen, N.P.T. Dong, M.E. Sorensen, N. Mrachacz-Kersting, N. Jiang, D. Farina, K. Dremstrup, Detection of movement intentions through a single channel of electroencephalography, 465–472 (2014)

    Google Scholar 

  • A. Karni, G. Meyer, C. Rey-Hipolito, P. Jezzard, M.M. Adams, R. Turner, L.G. Ungerleider, The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc. Natl. Acad. Sci. U. S. A. 95, 861–868 (1998)

    Article  Google Scholar 

  • E.C. Leuthardt, G. Schalk, J. Roland, A. Rouse, D.W. Moran, Evolution of brain-computer interfaces: going beyond classic motor physiology. Neurosurg. Focus 27, E4 (2009)

    Article  Google Scholar 

  • M. Li, Y. Liu, Y. Wu, S. Liu, J. Jia, L. Zhang, Neurophysiological substrates of stroke patients with motor imagery-based Brain-Computer Interface training. Int. J. Neurosci. 124, 403–415 (2014)

    Article  Google Scholar 

  • J.M. McDowd, An overview of attention: behavior and brain. J. Neurol. Phys. Ther. 31, 98–103 (2007)

    Article  Google Scholar 

  • M. Mukaino, T. Ono, K. Shindo, T. Fujiwara, T. Ota, A. Kimura, M. Liu, J. Ushiba, Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke. J. Rehabil. Med. 46, 378–382 (2014)

    Article  Google Scholar 

  • I.K. Niazi, N. Jiang, O. Tiberghien, J. Feldbæk-Nielsen, K. Dremstrup, D. Farina, Detection of movement intention from single-trial movement-related cortical potentials. J. Neural Eng. 8, 066009 (2011)

    Article  Google Scholar 

  • I.K. Niazi, N. Mrachacz-Kersting, N. Jiang, K. Dremstrup, D. Farina, Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 595–604 (2012)

    Article  Google Scholar 

  • A. Pascual-Leone, J. Grafman, M. Hallett, Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263, 1287–1289 (1994)

    Article  Google Scholar 

  • A. Pascual-Leone, A. Amedi, F. Fregni, L.B. Merabet, The plastic human brain cortex. Annu. Rev. Neurosci. 28, 377–401 (2005)

    Article  Google Scholar 

  • M.A. Perez, B.K.S. Lungholt, K. Nyborg, J.B. Nielsen, Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp. Brain Res. 159, 197–205 (2004)

    Article  Google Scholar 

  • N. Petersen, H. Morita, J. Nielsen, Modulation of reciprocal inhibition between ankle extensors and flexors during walking in man. J. Physiol. (Lond). 520, 605–619 (1999)

    Article  Google Scholar 

  • F. Pichiorri, F.F. De Vico, F. Cincotti, F. Babiloni, M. Molinari, S.C. Kleih, C. Neuper, A. Kubler, D. Mattia, Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness. J. Neural Eng. 8, 025020 (2011)

    Article  Google Scholar 

  • J. Polich, Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118, 2128–2148 (2007)

    Article  Google Scholar 

  • A. Ramos-Murguialday, D. Broetz, M. Rea, L. Laer, O. Yilmaz, F.L. Brasil, G. Liberati, M.R. Curado, E. Garcia-Cossio, A. Vyziotis, W. Cho, M. Agostini, E. Soares, S. Soekadar, A. Caria, L.G. Cohen, N. Birbaumer, Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74, 100–108 (2013)

    Article  Google Scholar 

  • J.J. Shih, D.J. Krusienski, J.R. Wolpaw, Brain-computer interfaces in medicine. Mayo Clin. Proc. 87, 268–279 (2012)

    Article  Google Scholar 

  • S. Silvoni, A. Ramos-Murguialday, M. Cavinato, C. Volpato, G. Cisotto, A. Turolla, F. Piccione, N. Birbaumer, Brain-computer interface in stroke: a review of progress. Clin. EEG Neurosci. Off. J. EEG Clin. Neurosci. Soc. ENCS 42, 245–252 (2011)

    Article  Google Scholar 

  • J. Song, B.M. Young, Z. Nigogosyan, L.M. Walton, V.A. Nair, S.W. Grogan, M.E. Tyler, D. Farrar-Edwards, K.E. Caldera, J.A. Sattin, J.C. Williams, V. Prabhakaran, Characterizing relationships of DTI, fMRI, and motor recovery in stroke rehabilitation utilizing brain-computer interface technology. Front. Neuroeng. 7, 31 (2014)

    Article  Google Scholar 

  • D. Tome, F. Barbosa, K. Nowak, J. Marques-Teixeira, The development of the N1 and N2 components in auditory oddball paradigms: a systematic review with narrative analysis and suggested normative values. J. Neural Transm. 122, 375–391 (2015)

    Article  Google Scholar 

  • E. Vaadia, N. Birbaumer, Grand challenges of brain computer interfaces in the years to come. Frontiers Neurosci. 3 (2009)

    Google Scholar 

  • R. Xu, N. Jiang, C. Lin, N. Mrachacz-Kersting, K. Dremstrup, D. Farina, Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications. IEEE Trans. Biomed. Eng. 61, 288–296 (2014)

    Article  Google Scholar 

  • R. Xu, N. Jiang, N. Mrachacz-Kersting, C. Lin, G. Asin, J. Moreno, J. Pons, K. Dremstrup, D. Farina, A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity. IEEE Trans. Biomed. Eng. (2014)

    Google Scholar 

  • O. Yilmaz, W. Cho, C. Braun, N. Birbaumer, A. Ramos-Murguialday, Movement related cortical potentials in severe chronic stroke. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 2216–2219 (2013)

    Google Scholar 

  • B.M. Young, Z. Nigogosyan, L.M. Walton, J. Song, V.A. Nair, S.W. Grogan, M.E. Tyler, D.F. Edwards, K. Caldera, J.A. Sattin, J.C. Williams, V. Prabhakaran, Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface. Front. Neuroeng. 7, 26 (2014)

    Google Scholar 

  • K.A. Yurgil, E.J. Golob, Cortical potentials in an auditory oddball task reflect individual differences in working memory capacity. Psychophysiology 50, 1263–1274 (2013)

    Article  Google Scholar 

  • U. Ziemann, T.V. Ilic, P. Jung, Long-term potentiation (LTP)-like plasticity and learning in human motor cortex–investigations with transcranial magnetic stimulation (TMS). Suppl. Clin. Neurophysiol. 59, 19–25 (2006)

    Article  Google Scholar 

  • S. Aliakbaryhosseinabadi, L. Petrini, N. Mrachacz-Kersting, Effect of different attentional level and task repetition on movement-related cortical potential, September 16–19, 2014 at the Graz University of Technology, Austria (2014)

    Google Scholar 

  • N. Mrachacz-Kersting, N. Jiang, R. Xu, K. Dremstrup, D. Farina, Plasticity following skilled learning and the implications for BCI performance, September 16–19, 2014 at the Graz University of Technology, Austria (2014)

    Google Scholar 

Download references

Acknowledgements

We wish to acknowledge our subjects and all of the students from the laboratory, both past and present.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mrachacz-Kersting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Mrachacz-Kersting, N. et al. (2015). The Changing Brain: Bidirectional Learning Between Algorithm and User. In: Guger, C., Müller-Putz, G., Allison, B. (eds) Brain-Computer Interface Research. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-25190-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25190-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25188-2

  • Online ISBN: 978-3-319-25190-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics