Skip to main content

Converging from Branching to Linear Metrics on Markov Chains

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9399))

Abstract

We study the strong and strutter trace distances on Markov chains (MCs). Our interest in these metrics is motivated by their relation to the probabilistic \(\text { LTL}^{}\)-model checking problem: we prove that they correspond to the maximal differences in the probability of satisfying the same \(\text { LTL}^{}\) and \(\text { LTL}^{\text {-}\mathsf {x}}\) (\(\text { LTL}^{}\) without next operator) formulas, respectively. The threshold problem for these distances (whether their value exceeds a given threshold) is NP-hard and not known to be decidable. Nevertheless, we provide an approximation schema where each lower and upper-approximant is computable in polynomial time in the size of the MC.

The upper-approximants are Kantorovich-like pseudometrics, i.e. branching-time distances, that converge point-wise to the linear-time metrics. This convergence is interesting in itself, since it reveals a nontrivial relation between branching and linear-time metric-based semantics that does not hold in the case of equivalence-based semantics.

Work supported by the European Union 7th Framework Programme (FP7/2007–2013) under Grants Agreement nr. 318490 (SENSATION), nr. 601148 (CASSTING) and by the Sino-Danish Basic Research Center IDEA4CPS funded by the Danish National Research Foundation and the National Science Foundation China.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Existence and uniqueness follows by the Hahn-Kolmogorov extension theorem.

  2. 2.

    The MC has been adapted to the case of labeled states, instead of labeled transitions.

  3. 3.

    Note that , i.e., it is the unique map s.t., for all \(n \ge 1\), .

  4. 4.

    We assume that whenever \(i > j\).

References

  1. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly exact computation of bisimilarity distances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 1–15. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On the total variation distance of semi-markov chains. In: Pitts, A. (ed.) FOSSACS 2015. LNCS, vol. 9034, pp. 185–199. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  4. Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W., Hendriks, M.: UPPAAL 4.0. In: QEST, pp. 125–126. IEEE Computer Society (2006)

    Google Scholar 

  5. Chen, D., van Breugel, F., Worrell, J.: On the complexity of computing probabilistic bisimilarity. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 437–451. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Chen, T., Kiefer, S.: On the total variation distance of labelled markov chains. In: CSL-LICS 2014, pp. 33:1–33:10. ACM (2014)

    Google Scholar 

  7. Cortes, C., Mohri, M., Rastogi, A.: Lp distance and equivalence of probabilistic automata. Int. J. Found. Comput. Sci. 18(04), 761–779 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching metrics for quantitative transition systems. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 97–109. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game relations and metrics. In: LICS, pp. 99–108, July 2007

    Google Scholar 

  10. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labeled markov systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 258–273. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled markov processes. Theoret. Comput. Sci. 318(3), 323–354 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue of weak bisimulation for probabilistic processes. In: LICS, pp. 413–422. IEEE Computer Society (2002)

    Google Scholar 

  13. Ferns, N., Precup, D., Knight, S.: Bisimulation for markov decision processes through families of functional expressions. In: van Breugel, F., Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. LNCS, vol. 8464, pp. 319–342. Springer, Heidelberg (2014)

    Google Scholar 

  14. Fu, H.: Computing game metrics on markov decision processes. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 227–238. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Lamport, L.: What good is temporal logic?. In: IFIP, pp. 657–668 (1983)

    Google Scholar 

  17. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lindvall, T.: Lectures on the Coupling Method. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1992)

    MATH  Google Scholar 

  19. Lyngsø, R.B., Pedersen, C.N.S.: The consensus string problem and the complexity of comparing hidden Markov models. J. Comput. Syst. Sci. 65(3), 545–569 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mio, M.: Upper-expectation bisimilarity and Lukasiewicz \(\mu \)-calculus. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 335–350. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  21. Pnueli, A.: The temporal logic of programs. In: SFCS, pp. 46–57. IEEE Computer Society (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Bacci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bacci, G., Bacci, G., Larsen, K.G., Mardare, R. (2015). Converging from Branching to Linear Metrics on Markov Chains. In: Leucker, M., Rueda, C., Valencia, F. (eds) Theoretical Aspects of Computing - ICTAC 2015. ICTAC 2015. Lecture Notes in Computer Science(), vol 9399. Springer, Cham. https://doi.org/10.1007/978-3-319-25150-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25150-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25149-3

  • Online ISBN: 978-3-319-25150-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics