Skip to main content

Parameter Estimation of Atmospheric Release Incidents Using Maximal Information Collection

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8964))

Abstract

The effects of data measurement on source parameter estimation are studied. The concept of mutual information is applied to find the optimal location for each sensor to improve accuracy of the overall estimation process. For validation purposes, an advection - diffusion simulation code, called SCIPUFF, is used as a modeling testbed to study the effects of using dynamic data measurement. Bayesian inference framework is utilized for model-data fusion using stationary and mobile sensor networks, where in mobile sensors, the proposed approach is used to locate data observation sensors. As our numerical simulations show, using the proposed approach leads to a considerably better estimate of parameters comparing with stationary sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sandini, G., Lucarini, G., Varoli, M.: Gradient driven self-organizing systems. In: Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems 1993, IROS’93, Vol. 1, pp. 429–432. IEEE (1993)

    Google Scholar 

  2. Hayes, A.T., Martinoli, A., Goodman, R.M.: Swarm robotic odor localization. In: 2001 Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1073–1078. IEEE (2001)

    Google Scholar 

  3. Zarzhitsky, D., Spears, D.F., Spears, W.M.: Distributed robotics approach to chemical plume tracing. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2005), pp. 4034–4039. IEEE (2005)

    Google Scholar 

  4. Julian, B.J., Angermann, M., Schwager, M., Rus, D.: Distributed robotic sensor networks: an information-theoretic approach. Int. J. Robot. Res. 31(10), 1134–1154 (2012)

    Article  Google Scholar 

  5. MartíNez, S., Bullo, F.: Optimal sensor placement and motion coordination for target tracking. Automatica 42(4), 661–668 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Tharmarasa, R., Kirubarajan, T., Hernandez, M.L.: Large-scale optimal sensor array management for multitarget tracking. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(5), 803–814 (2007)

    Google Scholar 

  7. Hoffmann, G.M., Tomlin, C.J.: Mobile sensor network control using mutual information methods and particle filters. IEEE Trans. Autom. Control 55(1), 32–47 (2010)

    Article  MathSciNet  Google Scholar 

  8. Choi, H.-L., How, J.P.: Continuous trajectory planning of mobile sensors for informative forecasting. Automatica 46(8), 1266–1275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Williams, J.L., Fisher, J.W., Willsky, A.S.: Approximate dynamic programming for communication-constrained sensor network management. IEEE Trans. Sig. Process. 55(8), 4300–4311 (2007)

    Article  MathSciNet  Google Scholar 

  10. Krause, A., Guestrin, C., Gupta, A., Kleinberg, J.: Near-optimal sensor placements: maximizing information while minimizing communication cost. In: Proceedings of the 5th International Conference on Information Processing in Sensor Networks, pp. 2–10. ACM (2006)

    Google Scholar 

  11. Nagavenkat, A., Singla, P., Singh, T.: The conjugate unscented transform-an approach to evaluate multi-dimensional expectation integrals. In: Proceedings of the American Control Conference (2012)

    Google Scholar 

  12. Nagavenkat, A., Singla, P., Singh, T.: Conjugate unscented transform rules for uniform probability density functions. In: Proceedings of the American Control Conference (2013)

    Google Scholar 

  13. Cover, T.M., Thomas, J.A.: Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience, Hoboken (2006)

    Google Scholar 

  14. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vols. I and II, Cambridge (2000)

    Google Scholar 

  15. Madankan, R., Singla, P., Singh, T., Scott, P.D.: Polynomial-chaos-based Bayesian approach for state and parameter estimations. J. Guidance Control Dyn. 36(4), 1058–1074 (2013)

    Article  Google Scholar 

  16. Sykes, R.I., Parker, S.F., Henn, D.S.: SCIPUFF Version 2.2 Technical Documentation (729)

    Google Scholar 

  17. Robins, P., Rapley, V., Thomas, P.: A probabilistic chemical sensor model for data fusion. In: 2005 8th International Conference on Information Fusion, vol. 2, p. 7. IEEE (2005)

    Google Scholar 

Download references

Acknowledgement

This material is based upon work supported by the National Science Foundation under award number CMMI- 1054759 and AFOSR grant number FA9550-11-1-0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Madankan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Madankan, R., Singla, P., Singh, T. (2015). Parameter Estimation of Atmospheric Release Incidents Using Maximal Information Collection. In: Ravela, S., Sandu, A. (eds) Dynamic Data-Driven Environmental Systems Science. DyDESS 2014. Lecture Notes in Computer Science(), vol 8964. Springer, Cham. https://doi.org/10.1007/978-3-319-25138-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25138-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25137-0

  • Online ISBN: 978-3-319-25138-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics