Skip to main content

Specification of the Ionosphere-Thermosphere Using the Ensemble Kalman Filter

  • Conference paper
  • First Online:
Dynamic Data-Driven Environmental Systems Science (DyDESS 2014)

Abstract

The Ionosphere-Thermosphere environment undergoes constant and sometimes dramatic changes due to solar and geomagnetic activity. Furthermore, given that this environment has a significant effect on space infrastructure, such as satellites, it is important to understand the potential changes caused by space weather events.

This work presents the implementation of the ensemble Kalman filter assimilation technique to improve the nowcast and forecast of the thermosphere environment. Specifically, the assimilation tries to adjust F10.7, a solar radio flux parameter at 10.7 cm wavelength that acts as a proxy for solar activity.

The results show that during high solar activity, the measured F10.7 index is able to account for the variability in the ionosphere-thermosphere, hence the correction provided by the assimilation is small. On the other hand, during low solar activity, F10.7 is unable to account for variability in the ionosphere-thermosphere, and the correction provided by the assimilation drastically improves the nowcast/forecast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daley, R.: Atmospheric Data Analysis. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  2. Dickinson, R., Ridley, E., Roble, R.: A three-dimensional general circulation model of the thermosphere. J. Geophys. Res. 86, 1499–1512 (1981)

    Article  Google Scholar 

  3. Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5), 10143–10162 (1994)

    Article  Google Scholar 

  4. Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn. 53, 343–367 (2003)

    Article  Google Scholar 

  5. Hamill, T., Whitaker, J., Snyder, C.: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev. 129, 2776–2790 (2001)

    Article  Google Scholar 

  6. Hedin, A.: A revised thermospheric model based on mass spectrometer and incoherent scatter data: Msis-83. J. Geophys. Res. 88, 10170–10188 (1983)

    Article  Google Scholar 

  7. Hedin, A., Fleming, E., Manson, A., Schmidlin, F., Avery, S., Clark, R., Franke, S., Fraser, G., Tsuda, T., Vial, F., Vincent, R.: Empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Terr. Phys. 58, 1421–1447 (1996)

    Article  Google Scholar 

  8. Houtekamer, P., Mitchell, H.: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev. 126, 796–811 (1998)

    Article  Google Scholar 

  9. Hunt, B., Kostelich, E., Szunyogh, I.: Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter. Arxiv preprint physics/0511236 (2005)

  10. Kalman, R.: A new approach to linear filtering and prediction problems. Trans. ASME Ser. D J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  11. Kalnay, E.: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  12. Lee, I., Matsuo, T., Richmond, A., Liu, J., Wang, W., Lin, C., Anderson, J., Chen, M.: Assimilation of formosat-3/cosmic electron density profiles into a coupled thermosphere/ionosphere model using ensemble kalman filtering. J. Geophys. Res. 117, A10318 (2012)

    Article  Google Scholar 

  13. Matsuo, T., Lee, I.T., Anderson, J.: Thermospheric mass density specification using an ensemble kalman filter. J. Geophys. Res. Space Phys. 118, 1339–1350 (2013)

    Article  Google Scholar 

  14. Morozov, A., Ridley, A., Bernstein, D., Collins, N., Hoar, T., Anderson, J.: Data assimilation and driver estimation for the global ionosphere-thermosphere model using the ensemble adjustment kalman filter. J. Atmos. Sol.-Terr. Phy. 104, 126–136 (2013)

    Article  Google Scholar 

  15. Picone, J., Hedin, A., Drob, D., Aikin, A.: Nrlmsise-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 107, 1468 (2002)

    Article  Google Scholar 

  16. Rawer, K., Bilitza, D., Ramakrishnan, S.: Goals and status of the international reference ionosphere. Rev. Geophys. 16, 177 (1978)

    Article  Google Scholar 

  17. Reigber, C., Luhr, H., Schwintzer, P.: Champ mission status. Adv. Space Res. 30, 129–134 (2002)

    Article  Google Scholar 

  18. Richmond, A., Ridley, E., Roble, R.: A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19(6), 601–604 (1992)

    Article  Google Scholar 

  19. Ridley, A.J., Deng, Y., Toth, G.: The global ionosphere-thermosphere model. J. Atmos. Sol.-Terr. Phys. 68, 839–864 (2006)

    Article  Google Scholar 

  20. Sutton, E.: Normalized force coefficients for satellites with elongated shapes. J. Spacecraft Rockets 46, 112–116 (2009)

    Article  Google Scholar 

  21. Sutton, E., Nerem, R., Forbes, J.: Density and winds in the thermosphere deduced from accelerometer data. J. Spacecraft Rockets 44, 1210–1219 (2007)

    Article  Google Scholar 

  22. Tapley, B., Bettadpur, S., Watkins, M., Reigber, C.: The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31, L09607 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This research was conducted as part of the Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking (IMPACT) project, funded by the Laboratory Directed Research and Development program within Los Alamos National Laboratory. More information on www.impact.lanl.gov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto C. Godinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Godinez, H.C., Lawrence, E., Higdon, D., Ridley, A., Koller, J., Klimenko, A. (2015). Specification of the Ionosphere-Thermosphere Using the Ensemble Kalman Filter. In: Ravela, S., Sandu, A. (eds) Dynamic Data-Driven Environmental Systems Science. DyDESS 2014. Lecture Notes in Computer Science(), vol 8964. Springer, Cham. https://doi.org/10.1007/978-3-319-25138-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25138-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25137-0

  • Online ISBN: 978-3-319-25138-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics