Skip to main content

Analytical Approximation of the Heavy-Tail Structure for Intermittently Unstable Complex Modes

  • Conference paper
  • First Online:
Dynamic Data-Driven Environmental Systems Science (DyDESS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8964))

  • 1077 Accesses

Abstract

In this work, we consider systems that are subjected to intermittent instabilities due to external, correlated stochastic excitation. These intermittent instabilities, though rare, give rise to heavy-tailed probability distribution functions (pdf). By making appropriate assumptions on the form of these instabilities, we formulate a method for the analytical approximation of the pdf of the system response. This method relies on conditioning the pdf of the response on the occurrence of an instability and the separate analysis of the two states of the system, the unstable and stable state. In the stable regime we employ steady state assumptions, which lead to the derivation of the conditional response pdf using standard methods. The unstable regime is inherently transient and in order to analyze this regime we characterize the statistics under the assumption of an exponential growth phase and a subsequent decay phase until the system is brought back to the stable attractor. We illustrate our method to a prototype intermittent system, a complex mode in a turbulent signal, and show that the analytic results compare favorably with direct Monte Carlo simulations for a broad range of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pedlosky, J.: Ocean Circulation Theory. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  2. Salmon, R.: Lectures on Geophysical Fluid Dynamics. Oxford University Press, Oxford (1998)

    Google Scholar 

  3. DelSole, T.: Stochastic models of quasigeostrophic turbulence. Surv. Geophys. 25, 107–149 (2004)

    Article  Google Scholar 

  4. Majda, A.J., Abramov, R.V., Grote, M.J.: Information Theory and Stochastics for Multiscale Nonlinear Systems. CRM Monograph Series, vol. 25. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  5. Majda, A.J., McLaughlin, D.W., Tabak, E.G.: A one-dimensional model for dispersive wave turbulence. J. Nonlinear Sci. 6, 9–44 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dysthe, K., Krogstad, H., Muller, P.: Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xiao, W., Liu, Y., Wu, G., Yue, D.K.P.: Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution. J. Fluid Mech. 720, 357–392 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Majda, A.J., Harlim, J.: Filtering Complex Turbulent Systems. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  9. Cousins, W., Sapsis, T.P.: Quantification and prediction of extreme events in a one-dimensional nonlinear dispersive wave model. Physica D 280, 48–58 (2014)

    Article  MATH  Google Scholar 

  10. Chen, N., Majda, A.J., Giannakis, D.: Predicting the cloud patterns of the Madden-Julian Oscillation through a low-order nonlinear stochastic model. Geophys. Res. Lett. 41, 5612–5619 (2014)

    Article  Google Scholar 

  11. Sobczyk, K.: Stochastic Differential Equations. Kluwer Academic Publishers, Dordrecht (1991)

    Book  MATH  Google Scholar 

  12. Soong, T., Grigoriu, M.: Random Vibration of Mechanical and Structural Systems. PTR Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  13. Sapsis, T.P., Athanassoulis, G.A.: New partial differential equations governing the joint, response-excitation, probability distributions of nonlinear systems, under general stochastic excitation. Probab. Eng. Mech. 23(2-3), 289–306 (2008)

    Article  Google Scholar 

  14. Venturi, D., Sapsis, T.P., Cho, H., Karniadakis, G.E.: A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems. Proc. Roy. Soc. A 468, 759 (2012)

    Article  MathSciNet  Google Scholar 

  15. Blake, I.F., Lindsey, W.C.: Level-crossing problems for random processes. IEEE Trans. Inf. Theor. 19, 295–315 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kratz, M.F.: Level crossings and other level functionals of stationary Gaussian processes. Probab. Surv. 3, 230–288 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rice, S.O.: Distribution of the duration of fades in radio transmission: Gaussian noise model. Bell Syst. Tech. J. 37, 581–635 (1958)

    Article  MathSciNet  Google Scholar 

  18. Gershgorin, B., Harlim, J., Majda, A.J.: Test models for improving filtering with model errors through stochastic parameter estimation. J. Comput. Phys. 229(1), 1–31 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gershgorin, B., Harlim, J., Majda, A.J.: Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation. J. Comput. Phys. 229(1), 32–57 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Branicki, M., Gershgorin, B., Majda, A.J.: Filtering skill for turbulent signals for a suite of nonlinear and linear extended Kalman filters. J. Comput. Phys. 231, 1462–1498 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Branicki, M., Majda, A.J.: Quantifying uncertainty for predictions with model error in non-Gaussian systems with intermittency. Nonlinearity 25, 2543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Majda, A.J., Branicki, M.: Lessons in uncertainty quantification for turbulent dynamical systems. Discrete continuous Dyn. Syst. 32, 3133–3221 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research has been partially supported by the Naval Engineering Education Center (NEEC) grant 3002883706 and by the Office of Naval Research (ONR) grant ONR N00014-14-1-0520. The authors thank Dr. Craig Merrill (NEEC Technical Point of Contact), Dr. Vadim Belenky, and Prof. Andrew Majda for numerous stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa A. Mohamad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mohamad, M.A., Sapsis, T.P. (2015). Analytical Approximation of the Heavy-Tail Structure for Intermittently Unstable Complex Modes. In: Ravela, S., Sandu, A. (eds) Dynamic Data-Driven Environmental Systems Science. DyDESS 2014. Lecture Notes in Computer Science(), vol 8964. Springer, Cham. https://doi.org/10.1007/978-3-319-25138-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25138-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25137-0

  • Online ISBN: 978-3-319-25138-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics