Skip to main content

Mobility-Aware Coordinated EV Charging in VANET-Enhanced Smart Grid

  • Chapter
  • First Online:
Mobile Electric Vehicles

Part of the book series: Wireless Networks ((WN))

Abstract

Coordinated charging can enable efficient charging for electric vehicles (EVs) to enhance the overall energy utilization while avoiding the overload of an electric power system. However, it is challenging to design an efficient coordinated charging strategy to guide the mobile EVs to fast-charging stations to achieve globally optimal energy utilization. In this chapter, we study a specific smart grid with enhanced communication capabilities, which is termed as a VANET-enhanced smart grid. Vehicular ad-hoc networks (VANETs) are leveraged therein to support real-time communications among highly mobile EVs and between EVs and road-side units (RSUs) for real-time vehicle mobility information collection and charging decisions dispatching. We then propose a mobility-aware coordinated charging strategy for EVs. The proposed strategy can not only improve the overall energy utilization while protecting the power system from overload, but also address the range anxieties of individual EVs via deliberately controlling the average travel cost. Specifically, we consider the travel cost incurred by mobility for an EV in two-fold: (1) the travel distance from the current EV location to the fast-charging station, and (2) the transmission delay for an EV to receive a charging decision through the VANETs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    DSRC protocol supports both RSU-to-vehicle/vehicle-to-RSU (R2V/V2R) and vehicle-to-vehicle (V2V) communication.

  2. 2.

    Note that if the distributed generation is adopted in the distribution system, the overloading problem should also be considered.

  3. 3.

    In this chapter, the headway distance is defined as the distance between two neighboring vehicles in the same lane.

References

  1. M. Wang, H. Liang, R. Deng, R. Zhang, X. Shen, VANET based online charging strategy for electric vehicles, in Proceedings of the IEEE GLOBECOM’13, Atlanta, Dec 2013

    Google Scholar 

  2. M. Wang, H. Liang, R. Zhang, R. Deng, X. Shen, Mobility-aware coordinated charging for electric vehicles in VANET-enhanced smart grid. IEEE J. Sel. Areas Commun. 32(7), 1–17 (2014)

    Article  Google Scholar 

  3. TESLA Motors, [Online] available: http://www.teslamotors.com/Pages/goelectric#

    Google Scholar 

  4. A comprehensive guide to plug-in hybrid vehicles, hybrid cars (2011), [Online] available: http://www.hybridcars.com/plug-in-hybrid-cars/$#$battery

  5. Electric Power Resech Institute, [Online] available: http://www.epri.com/Pages/Default.aspx

  6. A. Heider, H.J. Haubrich, Impact of wide-scale EV charging on the power supply network, in IEEE Colloquium on Electric Vehicles – A Technology Roadmap for the Future, London, vol. 6, no. 262, 1998, pp. 1–4

    Google Scholar 

  7. K. Nyns, E. Haesen, J. Driesen, The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE Trans. Power Syst. 25(1), 371–380 (2010)

    Article  Google Scholar 

  8. I.S. Bayram, G. Michailidis, M. Devetsikiotis, F. Granelli, Electric power allocation in a network of fast charging stations. IEEE J. Sel. Areas Commun.: Smart Grid Commun. Ser. 31(7), 1235–1246 (2013)

    Google Scholar 

  9. P. Richardson, D. Flynn, A. Keane, Local versus centralized charging strategies for electric vehicles in low voltage distribution systems. IEEE Trans. Smart Grid 3(2), 1020–1028 (2012)

    Article  Google Scholar 

  10. H. Liang, B.J. Choi, W. Zhuang, X. Shen, Optimizing the energy delivery via V2G systems based on stochastic inventory theory. IEEE Trans. Smart Grid 4(4), 2230–2243 (2013)

    Article  Google Scholar 

  11. P. Richardson, D. Flynn, A. Keane, Optimal charging of electric vehicles in low voltage distribution systems. IEEE Trans. Power Syst. 27(1), 268–279 (2012)

    Article  Google Scholar 

  12. J. Lopes, S. Polenz, C. Moreira, R. Cherkaoui, Identification of control and management strategies for LV unbalanced microgrids with plugged-in electric vehicles. IEEE J. Electr. Power Syst. Res. 80(8), 898–906 (2010)

    Article  Google Scholar 

  13. M. Shaaban, Y. Atwa, E. El-Saadany, PEVs modeling and impacts mitigation in distribution networks. IEEE Trans. Power Syst. 28(2), 1122–1131 (2013)

    Article  Google Scholar 

  14. D. Ban, G. Michailidis, M. Devetsikiotis, Demand response control for PHEV charging stations by dynamic price adjustments, in Proceedings of the IEEE Innovative Smart Grid Technologies, Washington, DC, Jan 2012

    Google Scholar 

  15. R.C. Green, L. Wang, M. Alam, The impact of plug-in hybrid electric vehicles on distribution networks: a review and outlook. J. Renew. Sustain. Energy Rev. 15(1), 544–553 (2011)

    Article  Google Scholar 

  16. G.T. Heydt, The impact of electric vehicle deployment on load management strategies. IEEE Trans. Power Appar. Syst. 1(144), 1253–1259 (1983)

    Article  Google Scholar 

  17. K. Mets, T. Verschueren, W. Haerick, C. Develder, F. Turck, Optimizing smart energy control strategies for plug-in hybrid electric vehicle charging, in Proceedings of the IEEE Network Operations and Management Symposium Workshops, Osaka, Apr 2010

    Google Scholar 

  18. K. Clement, E. Haesen, J. Driesen, Coordinated charging of multiple plug-in hybrid electric vehicles in residential distribution grids, in Proceedings of the IEEE Power Systems Conference and Exposition, Seattle, Mar 2009

    Google Scholar 

  19. L. Kelly, Probabilistic modeling of plug-in hybrid electric vehicle impacts on distribution networks in British Columbia, M. S. thesis, Department of Mechanical Engineering, University of Victoria, Victoria, 2009

    Google Scholar 

  20. S. Bae, A. Kwasinski, Spatial and temporal model of electric vehicle charging demand. IEEE Trans. Smart Grid 3(1), 394–403 (2012)

    Article  Google Scholar 

  21. H. Liang, W. Zhuang, Efficient on-demand data service delivery to high-speed trains in cellular/infostation integrated networks. IEEE J. Sel. Areas Commun. 30(4), 780–791 (2012)

    Article  Google Scholar 

  22. H. Liang, W. Zhuang, Double-loop receiver-initiated MAC for cooperative data dissemination via roadside WLANs. IEEE Trans. Commun. 60(9), 2644–2656 (2012)

    Article  Google Scholar 

  23. T.H. Luan, X. Shen, F. Bai, Integrity-oriented content transmission in the vehicular ad hoc networks, in Proceedings of the IEEE INFOCOM, Turin, Apr 2013

    Google Scholar 

  24. H.T. Cheng, H. Shan, W. Zhuang, Infotainment and road safety service support in vehicular networking: from a communication perspective. Mech. Syst. Signal Process. Spec. Issue Integr. Veh. Dyn. 25(6), 2020–2038 (2011)

    Article  Google Scholar 

  25. T.H. Luan, X. Ling, X. Shen, Provisioning QoS controlled media access in vehicular to infrastructure communications. IEEE Ad Hoc Netw. 10(2), 231–242 (2012)

    Article  Google Scholar 

  26. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  27. M. Duran, I. Grossmann, An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. http://vision-traffic.ptvgroup.com/en-uk/products/ptv-vissim/

  29. M.E. Elkhatb, R. El-Shatshat, M. Salama, Novel coordinated voltage control for smart distribution network with DG. IEEE Trans. Smart Grid 2(4), 598–605 (2011)

    Article  Google Scholar 

  30. L. Cheng, B.E. Henty, D.D. Stancil, F. Bai, P. Mudalige, Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band. IEEE J. Sel. Areas Commun. 25(8), 1501–1516 (2007)

    Google Scholar 

  31. A. Abdrabou, W. Zhuang, Probabilistic delay control and road side unit placement for vehicular ad hoc networks with disrupted connectivity. IEEE J. Sel. Areas Commun. 29(1), 129–139 (2011)

    Article  Google Scholar 

  32. A. May, Traffic Flow Fundamentals (Prentice Hall, Englewood Cliffs, 1990)

    Google Scholar 

  33. N. Wisitpongphan, F. Bai, P. Mudalige, V. Sadekar, O. Tonguz, Routing in sparse vehicular ad hoc networks. IEEE J. Sel. Areas Commun. 25(8), 1538–1556 (2007)

    Article  Google Scholar 

  34. O. Hafez, Some aspects of microgrid planning and optimal distribution operation in the presence of electric vehicles, M. S. thesis, Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, 2011

    Google Scholar 

  35. R. Nelson, Power requirements for batteries in hybrid electric vehicles. IEEE J. Power Source 91(1), 2–26 (2000)

    Article  Google Scholar 

  36. IEEE WG, IEEE 802.11p/D2.01, Draft Amendement to Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications: Wireless Access in Vehicular Environments, Mar 2007

    Google Scholar 

  37. N. Lu, N. Zhang, N. Cheng, X. Shen, J. Mark, F. Bai, Vehicles meet infrastructure: toward capacity-cost tradeoffs for vehicular access networks. IEEE Trans. Intell. Transp. Syst. 14(3), 1266–1277 (2013)

    Article  Google Scholar 

  38. M. Wang, H. Shan, L.X. Cai, N. Lu, X. Shen, F. Bai, Throughput capacity of VANETs by exploiting mobility diversity, in Proceedings of the IEEE ICC’12, Ottawa, June 2012

    Google Scholar 

  39. N. Lu, T. Luan, M.Wang, X. Shen, F. Bai, Bounds of asymptotic performance limits of social proximity vehicular networks. IEEE/ACM Trans. Networking 22(3), 812–825 (2014)

    Article  Google Scholar 

  40. M. Abboud, L. Jaoude, Z. Kerbage, Real time GPS navigation system (2004), http://webfea-lb.fea.aub.edu.lb/proceedings/2004/SRC-ECE-27.pdf

  41. A. Geoffrion, Lagrangean relaxation for integer programming. Math. Program. Study 2, 82–114 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  42. P. Bonami, L. Biegler, A. Conn, G. Cornuejols, I. Grossmann, C. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, A. Wachter, An algorithmic framework for convex mixed integer nonlinear programs. J. Discret. Optim. 5(2), 186–204 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. C. Norén, J. Pyrko, Typical load shapes for Swedish schools and hotels. Energy Build. 28(2), 145–157 (1998)

    Article  Google Scholar 

  44. R. Wiedemann, Modeling of RTI-elements on multi-lane roads, in Proceedings of the Drive Conference, Brussels, Feb 1991

    Google Scholar 

  45. J. Herrera, D. Work, R. Herring, X. Ban, A. Bayen, Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobility century field experiment. Working Paper UCB-ITS-VWP-2009-8, Aug 2009

    Google Scholar 

  46. R. Herring, A. Hofleitner, S. Amin, Using mobile phones to forecast arterial traffic through statistical learning, in Proceedings of the 89th Annual Meeting of Transportation Research Board, Washington, DC, Jan 2010

    Google Scholar 

  47. K. Lee, J. Lee, Y. Yi, I. Rhee, S. Chong, Mobile data offloading: how much can wifi deliver? in Proceedings of the ACM Co-NEXT, New York, Nov 2010

    Google Scholar 

  48. H. Liu, A. Danczyk, R. Brewer, R. Starr, Evaluation of cell phone traffic data in Minnesota. Transp. Res. Rec. 2086(1), 1–7 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Wang, M., Zhang, R., Shen, X.(. (2016). Mobility-Aware Coordinated EV Charging in VANET-Enhanced Smart Grid. In: Mobile Electric Vehicles. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-25130-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25130-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25128-8

  • Online ISBN: 978-3-319-25130-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics