Skip to main content

Advanced Methods in Variational Learning: Segmentation with Intensity Inhomogeneity

  • Chapter
  • First Online:
Mathematical Problems in Data Science
  • 3625 Accesses

Abstract

Mathematical imaging aims to develop new mathematical tools for the emerging field of image and data sciences. Automatic segmentation in the variational framework is a challenging as well as a demanding task for a number of imaging tasks. Achieving robustness and reliability is a major problem. The two-phase piecewise-constant model of the Mumford–Shah (2PCMS) energy is most suitable for images with simple and homogeneous features where the intensity variation is limited. However, it has been applied to many different types of synthetic and real images after some adjustments to the formulation. This chapter addresses the task of generalising this widely used model to account for intensity inhomogeneity which is common for real life images. We consider two ways of altering the fitting terms by ‘correcting’ the intensity. This allows us to process the type of images that are beyond 2PCMS. We first review the state of the art of such methods for treating inhomogeneity and then demonstrate inconsistencies in existing methods. Next we propose two modified variational models by introducing additional constraints and extend the concept to selective segmentation, where user input can aid the intensity correction. These models are minimised with convex relaxation methods, where the global minimiser can be found for a fixed fitting term. Finally, we present numerical results that demonstrate an improvement to existing methods in terms of reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ahmed, S. Yamany, N. Mohamed, A. Farag, T. Moriarty, A modified fuzzy c-means algorithm for bias field estimation and segmentation of mri data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002)

    Article  Google Scholar 

  2. N. Badshah, K. Chen, On two multigrid algorithms for modelling variational multiphase image segmentation. IEEE Trans. Image Process. 18, 1097–1106 (2009)

    Article  MathSciNet  Google Scholar 

  3. T. Brox, D. Cremers, On local region models and a statistical interpretation of the piecewise smooth MS functional. Int. J. Comput. Vis. 84(2), 184–193 (2009)

    Article  Google Scholar 

  4. V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  5. A. Chambolle, An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  6. T.F. Chan, L. Vese, Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  7. T.F. Chan, S. Esedoglu, M. Nikilova, Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66, 1932–1648 (2006)

    Article  MathSciNet  Google Scholar 

  8. D. Chen, M. Yang, L. Cohen, Global minimum for a variant Mumford-Shah model with application to medical image segmentation. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 1(1), 48–60 (2013)

    Google Scholar 

  9. W. Crum, O. Camara, D. Hill, Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans. Med. Imaging 25(11), 1451–1461 (2006)

    Article  Google Scholar 

  10. Y. Duan, H. Chang, W. Huang, J. Zhou, Simultaneous bias correction and image segmentation via L0 regularized Mumford-Shah model, in ICIP 2014

    Google Scholar 

  11. M. Jung, G. Peyre, L. Cohen, Nonlocal active contours. SIAM J. Imag. Sci. 5(3), 1022–1054 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  13. S. Lanktona, A. Tannenbaum, Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)

    Article  MathSciNet  Google Scholar 

  14. C. Li, C. Kao, J. Gore, Z. Ding, Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  15. C. Li, Z. Rui Huang, J. Gatenby, D. Metaxas, J. Gore, Global minimum for a variant Mumford-Shah model with application to medical image segmentation. Comput. Methods Biomech. Biomed. Eng. 20(7), 2007–2016 (2011)

    Google Scholar 

  16. F. Li, M. Ng, C. Li, Variational fuzzy Mumford-Shah model for image segmentation. SIAM J. Appl. Math. 70(7), 2750–2770 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Mumford, J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Nielsen, L. Florack, R. Deriche, Regularization and scale space. Technical Report, INRIA, 1994

    Google Scholar 

  19. S. Osher, J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Sun, Z. Chen, S. Jiang, Local morphology fitting active contour for automatic vascular segmentation. IEEE Trans. Biomed. Eng. 59(2), 464–473 (2012)

    Article  Google Scholar 

  21. A. Tsai, A. Yezzi, A. Willsky, Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  22. H. Zhao, T.F. Chan, B. Merriman, S. Osher, A variational level set approach to multiphase motion. J. Comput. Phys. 127(1), 179–195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spencer, J., Chen, K. (2015). Advanced Methods in Variational Learning: Segmentation with Intensity Inhomogeneity. In: Mathematical Problems in Data Science. Springer, Cham. https://doi.org/10.1007/978-3-319-25127-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25127-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25125-7

  • Online ISBN: 978-3-319-25127-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics