Skip to main content

History of Modern Seafloor Mapping

  • Chapter
  • First Online:
Seafloor Mapping along Continental Shelves

Part of the book series: Coastal Research Library ((COASTALRL,volume 13))

Abstract

Over the last century, remotely sensed mapping of continental shelf seafloor topography has had a rich history of applied research with varying techniques, all of which strive to accurately visualize the submarine benthos. Many early techniques (e.g., three-dimensional hachure maps) relied solely on the researcher’s knowledge and cartographic skills in absence of technological advances yet to be made. Acoustic mapping practices were then derived from war-time sonar sweeps that painted a surprisingly vivid picture of the seafloor through the use of sound. Through time, more sophisticated acoustic remote sensing techniques were developed and used as either sidescan sonar, single beam echo sounders, or multibeam reflection sounders. More powerful ground-penetrating seismic techniques have also been used to not only map the surface layer of the seafloor, but to also visualize what lies below the benthic interface. However, aircraft and satellite-assisted techniques enabled researchers to recently make considerable advancements in the visualization of benthic environments. Once mainly used as military reconnaissance procedures for strategic planning, the advent of high-resolution aerial photography and orthoimagery has proven to be among the most effective techniques for visualizing shallow, low turbid waters along continental shelves. Equally as effective for clear waters within the nearshore of the continental margin are airborne laser bathymetry (ALB) methods, which use pulses of light to acquire bathymetric and topographic configurations based on airborne laser reflectance. Lastly, hyperspectral and multispectral sensors onboard orbiting satellites (e.g., IKONOS, Landsat, MODIS, SPOT) provide a continuous stream of benthic environment visualization without the logistical inconveniences of deploying a vessel or aircraft every time images are to be acquired. A historical review of advances in seafloor mapping methods shows that remote sensing techniques led to new ways of visualizing dynamic benthic environments that ranged from broadly generalized geomorphological features to specific biological coverages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Able KW, Twichell DC, Grimes CB, Jones RS (1987) Sidescan sonar as a tool for detection of demersal fish habitats. Fish Bull NOAA 85(4):725–736

    Google Scholar 

  • Anders FJ, Byrnes MR (1991) Accuracy of shoreline change rates as determined from maps and aerial photographs. Shore Beach 59(1):17–26

    Google Scholar 

  • Andrefouet S, Muller-Karger F, Hochberg E, Hu C, Carder K (2001) Change detection in shallow coral reef environments using Landsat7 ETM+ data. Remote Sens Environ 79:150–162

    Article  Google Scholar 

  • Andrefouet S, Kramer P, Torres-Pulliza D, Joyce KE, Hochberg EJ, Garza-Perez R, Mumby PJ, Riegl B, Yamano H, White WH, Zubia M, Brock JC, Phinn SR, Naseer A, Hatcher BG, Muller-Karger FE (2003) Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sens Environ 88:128–143

    Article  Google Scholar 

  • Balch AH, Lee MW (1984) Vertical seismic profiling: technique, applications, and case histories. IHRDC Press, Boston, 488p

    Google Scholar 

  • Ballard RF, Sjostrom KJ, McGee RG, Leist RL (1993) A rapid geophysical technique for subbottom imaging, Dredging Research Technical Notes DRP-2-07. U.S. Army Engineer Waterways Experiment Station, Vicksburg, pp 117–128

    Google Scholar 

  • Barton C (2002) Marie Tharp, oceanographic cartographer, and her contributions to the revolution in the Earth sciences. In: Oldroyd DR (ed) The earth inside and out: some major contributions to geology in the twentieth century. The Geological Society of London, Oxford, pp 215–228

    Google Scholar 

  • Ben-Dor E, Patkin K, Banin A, Karnieli A (2002) Mapping of several soil properties using DAIS-7915 hyperspectral scanner data: a case study over clayey soils in Israel. Int J Remote Sens 23(6):1043–1062

    Article  Google Scholar 

  • Blondel P (2003) Seabed classification of ocean margins. In: Wefer G, Billet D, Hebbeln D, Jorgensen BB (eds) Ocean margin systems. Springer, Berlin, pp 125–141

    Google Scholar 

  • Blondel P (2009) The handbook of sidescan sonar. Springer Praxis Publishing Ltd., Chichester, 316p

    Book  Google Scholar 

  • Blondel P, Murton BJ (1997) Handbook of seafloor sonar imagery. Wiley, Chichester, 314p

    Google Scholar 

  • Bour W, Loubersac L, Rual P (1986) Thematic mapping of reefs by processing of simulated SPOT satellite data: application to the Trochus niloticus biotope on Tetembia Reef (New Caledonia). Mar Ecol Prog Ser 34:243–249

    Article  Google Scholar 

  • Brock JC, Purkis SJ (2009) The emerging role of Lidar remote sensing in coastal research and resource management. In: Brock J, Purkis S (eds) Coastal applications of airborne lidar. J Coastal Res, Special Issue No. 53:1–5

    Google Scholar 

  • Bukata RP, Jerome JH, Kondratyev KY, Posdnyakov DV (1995) Optical properties and remote sensing of inland and coastal waters. CRC Press, Boca Raton, 365p

    Google Scholar 

  • Capolsini P, Andrefouet S, Rion C, Payri C (2003) A comparison of Landsat ETM+, SPOT HRV, IKONOS, ASTER and airborne MASTER data for coral reef habitat mapping in South Pacific islands. Can J Remote Sens 29:187–200

    Article  Google Scholar 

  • Coco G, Murray AB (2007) Patterns in the sand: from forcing templates to self-organization. Geomorphology 91(3–4):271–290

    Article  Google Scholar 

  • Deronde B, Houthuys R, Henriet JP, Van Lancker V (2008) Monitoring of the sediment dynamics along a sandy shoreline by means of airborne hyperspectral remote sensing and LIDAR: a case study in Belgium. Earth Surf Process 33:280–294

    Article  Google Scholar 

  • Diachok O (ed) (1995) Full field inversion methods in ocean and seismo-acoustics. Springer, Dordrecht, 419p

    Google Scholar 

  • Dial G, Bowen H, Gerlach F, Grodecki J, Oleszczuk R (2003) IKONOS satellites, imagery, and products. Remote Sens Environ 88(1-2):23–36

    Article  Google Scholar 

  • Dobson EL, Dustan P (2000) The use of satellite imagery for detection of shifts in coral reef communities. In: Proceedings, American Society for Photogrammetry and Remote Sensing, 22–26 May 2000, Washington, DC

    Google Scholar 

  • Doel RE, Levin TJ, Marker MK (2006) Extending modern cartography to the ocean depths: military patronage, cold war priorities, and the Heezen-Tharp mapping project, 1952–1959. J Hist Geogr 32(3):605–626

    Article  Google Scholar 

  • Douvere F (2008) The importance of marine spatial planning in advancing ecosystem-based sea use management. Mar Policy 32(5):762–771

    Article  Google Scholar 

  • Edelmann H (1968) An underwater sound source with higher seismic efficiency. Geophys Prospect 16:474–490

    Article  Google Scholar 

  • Ekebom J, Erkkila A (2003) Using aerial photography for identification of marine and coastal habitats under the EU’s habitats directive. Aquat Conserv 13(4):287–304

    Article  Google Scholar 

  • Everitt JH, Yang C, Sriharan S, Judd FW (2008) Using high resolution satellite imagery to map black mangrove on the Texas gulf coast. J Coast Res 24(6):1582–1586

    Article  Google Scholar 

  • Finkl CW, Andrews JL (2008) Shelf geomorphology along the southeast Florida Atlantic continental platform: barrier coral reefs, nearshore bedrock, and morphosedimentary features. J Coast Res 24(4):823–849

    Article  Google Scholar 

  • Finkl CW, Banks KW (2010) Mapping seafloor topography based on interpretation of airborne laser bathymetry: examples from the southeast Florida Atlantic continental shelf. In: Martorino L, Puopolo K (eds) New oceanography research developments: marine chemistry, ocean floor analyses and marine phytoplankton. Nova Science Publishers, Hauppauge, pp 163–187

    Google Scholar 

  • Finkl CW, DaPrato GW (1993) Delineation and distribution of nearshore reefs in subtropical southeast Florida coastal environments using Thematic Mapper imagery. MTS ‘93 Conference Proceedings. Marine Technology Society Annual Meeting, Long Beach, CA, pp 90–96

    Google Scholar 

  • Finkl CW, Makowski C (2015) Autoclassification versus cognitive interpretation of digital bathymetric data in terms of geomorphological features for seafloor characterization. J Coast Res 31(1):1–16

    Article  Google Scholar 

  • Finkl CW, Vollmer H (2011) Interpretation of bottom types from IKONOS satellite images of the southern Key West National Wildlife Refuge, Florida, USA. In: FurmaÅ„czyk K, Giza A, Terefenko P (eds) Proceedings of the 11th International Coastal Symposium (ICS). J Coastal Res, Special Issue No. 64:731–735

    Google Scholar 

  • Finkl CW, Warner MT (2005) Morphological features and morphological zones along the inner continental shelf of southeastern Florida: an example of form and process controlled by lithology. In: Finkl C (ed) The sun, earth, and moon: a tribute to Rhodes W. Fairbridge. J Coastal Res, Special Issue No. 42:79–96

    Google Scholar 

  • Finkl CW, Benedet L, Andrews JL (2004) Laser Airborne Depth Sounder (LADS): a new bathymetric survey technique in the service of coastal engineering environmental studies, and coastal zone management. Proceedings of the 17th Annual National Conference on Beach Preservation Technology. 11–13 February 2004, Lake Buena Vista, FL. Florida Shore and Beach Preservation Association, CD-ROM, Tallahassee, 15p

    Google Scholar 

  • Finkl CW, Benedet L, Andrews JL (2005a) Interpretation of seabed geomorphology based on spatial analysis of high-density airborne laser bathymetry. J Coast Res 21(3):501–514

    Article  Google Scholar 

  • Finkl CW, Benedet L, Andrews JL (2005b) Submarine geomorphology of the continental shelf off southeast Florida based on interpretation of airborne laser bathymetry. J Coast Res 21(6):1178–1190

    Article  Google Scholar 

  • Finkl CW, Becerra JE, Achatz V, Andrews JL (2008) Geomorphological mapping along the upper southeast Florida Atlantic continental platform; I: mapping units, symbolization, and GIS presentation of interpreted seafloor topography. J Coast Res 24(6):1388–1417

    Article  Google Scholar 

  • Finkl CW, Makowski C, Vollmer H (2014) Advanced techniques for mapping biophysical environments on carbonate banks using Laser Airborne Depth Sounding (LADS) and IKONOS satellite imagery. In: Finkl CW, Makowski C (eds) Remote sensing and modeling: advances in Coastal and Marine Resources, Coastal Research Library Volume 9. Springer, Dordrecht, pp 31–63

    Google Scholar 

  • Fish JP, Carr HA (1991) Sound underwater images: a guide to the generation and interpretation of sidescan sonar data. Institute of Marine Acoustics, Falmouth, 189p

    Google Scholar 

  • Flood RD (1980) Deep-sea sedimentary morphology: modeling and interpretation of echo-sounding profiles. Mar Geol 38(1–3):77–92

    Article  Google Scholar 

  • Gazioglu C, Yucel ZY, Dogan E (2005) Morphological features of major submarine landslides of Marmara Sea using multibeam data. J Coast Res 21(4):664–673

    Article  Google Scholar 

  • Gesch DB (2009) Analysis of lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise. In: Brock J, Purkis S (eds) Coastal applications of airborne lidar. J Coastal Res, Special Issue No. 53:49–58

    Google Scholar 

  • Gorman L, Morang A, Larson R (1998) Monitoring the coastal environment; part IV: mapping, shoreline changes, and bathymetric analysis. J Coast Res 14(1):61–92

    Google Scholar 

  • Grant JA, Schreiber R (1990) Modern swath sounding and sub-bottom profiling technology for research applications: the Atlas Hydrosweep and Parasound systems. Mar Geophys Res 12:9–21

    Article  Google Scholar 

  • Guenther GC, Cunningham AG, LaRocque PE, Reid DJ (2000) Meeting the accuracy challenge in airborne lidar bathymetry. Proceedings of EARSeL-SIG-Workshop LIDAR, Dresden/FRG, 16–17 June 2000, 27p

    Google Scholar 

  • Hagemann J (1958) Facsimile recording of sonic values of the ocean bottom. United States Patent Office, Grant Publication Number US4197591 A. Filed on: August 4, 1958

    Google Scholar 

  • Hardage BA (1985) Vertical seismic profiling. Lead Edge 4(11):59

    Article  Google Scholar 

  • Heezen BC, Tharp M (1965) Tectonic fabric of the Atlantic and Indian Oceans and continental drift. Philos Trans R Soc Lond Ser A Math Phys Sci 258(1088):90–106

    Article  Google Scholar 

  • Heezen BC, Tharp M (1966) Physiography of the Indian Ocean. Philos Trans R Soc Lond Ser A Math Phys Sci 259(1099):137–149

    Article  Google Scholar 

  • Heezen BC, Tharp M (1977) World ocean floor. U.S. Navy, Washington, DC

    Google Scholar 

  • Hirano A, Madden M, Welch R (2003) Hyperspectral image data for mapping wetland vegetation. Wetlands 23(2):436–448

    Article  Google Scholar 

  • Hochberg EJ, Atkinson MJ (2000) Spectral discrimination of coral reef benthic communities. Coral Reefs 19:164–171

    Article  Google Scholar 

  • Hochberg EJ, Andrefouet S, Tyler MR (2003) Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments. IEEE Trans Geosci Remote Sens 41(7):1724–1729

    Article  Google Scholar 

  • Hutchins RW, McKeown DL, King LH (1976) A deep-tow high resolution seismic system for continental shelf mapping. Geosci Can 3:95–100

    Google Scholar 

  • Irish JL, Lillycrop WJ (1997) Monitoring New Pass, Florida with high density lidar bathymetry. J Coast Res 13(4):1130–1140

    Google Scholar 

  • Irish JL, Lillycrop WJ (1999) Scanning laser mapping of the coastal zone: the SHOALS system. ISPRS J Photogramm Remote Sens 54(2–3):123–129

    Article  Google Scholar 

  • Irish JL, McClung JK, Lillycrop WJ (2000) Airborne lidar bathymetry: the SHOALS system. Inter Navig Assoc PIANC Bull 103:43–53

    Google Scholar 

  • Joyce KE, Phinn SR, Roelfsema CM, Neil DT, Dennison WC (2004) Combining Landsat ETM+ and reef check classifications for mapping coral reefs: a critical assessment from the southern Great Barrier Reef, Australia. Coral Reefs 23:21–25

    Article  Google Scholar 

  • Kempeneers P, Deronde B, Provoost S, Houthuys R (2009) Synergy of airborne digital camera and Lidar data to map coastal dune vegetation. In: Brock J, Purkis S (eds) Coastal applications of airborne lidar. J Coastal Res, Special Issue No. 53:73–82

    Google Scholar 

  • Kenny AJ, Cato I, Desprez M, Fader G, Schuttenhelm RTE, Side J (2003) An overview of seabed-mapping technologies in the context of marine habitat classification. ICES J Mar Sci 60(2):411–418

    Article  Google Scholar 

  • Kerr JM (2011) Worldview-02 offers new capabilities for the monitoring of threatened coral reefs. In: N.S.U.-N.C.R. Institute (ed) http://www.digitalglobe.com/downloads/8bc/Kerr_2010_Bathymetry_from_WV2.pdf

  • Klemas V (2011a) Remote sensing techniques for studying coastal ecosystems: an overview. J Coast Res 27(1):2–17

    Article  Google Scholar 

  • Klemas V (2011b) Remote sensing of wetlands: case studies comparing practical techniques. J Coast Res 27(3):418–427

    Article  Google Scholar 

  • Klemas V (2011c) Beach profiling and Lidar bathymetry: an overview with case studies. J Coast Res 27(6):1019–1028

    Article  Google Scholar 

  • Klemsa V, Yan X-H (2014) Subsurface and deeper ocean remote sensing from satellites: an overview and new results. Prog Oceanogr 122:1–9

    Article  Google Scholar 

  • Kruse FA (2003) Preliminary results- hyperspectral mapping of coral reef systems using EO-1 hyperion. Proceedings from the 12th JPL Airborne Geoscience Workshop, Pasadena, CA, USA, pp 157–173

    Google Scholar 

  • Lee ZP, Carder KL (2000) Band-ratio or spectral-curvature algorithms for satellite remote sensing? Appl Opt 39(24):4377–4380

    Article  Google Scholar 

  • Lewis JB (2002) Evidence from aerial photography of structural loss of coral reefs at Barbados, West Indies. Coral Reefs 21:49–56

    Article  Google Scholar 

  • Lidz BH, Shinn EA, Hine AC, Locker SD (1997) Contrasts within an outlier-reef system: evidence for differential quaternary evolution, south Florida windward margin, U.S.A. J Coast Res 13(3):711–731

    Google Scholar 

  • Lidz BH, Reich CD, Peterson RL, Shinn EA (2006) New maps, new information: coral reefs of the Florida keys. J Coast Res 22(2):260–282

    Article  Google Scholar 

  • Long TM, Angelo J, Weishampel JF (2011) LiDAR-derived measures of hurricane- and restoration-generated beach morphodynamics in relation to sea turtle nesting behaviour. Int J Remote Sens 32(1):231–241

    Article  Google Scholar 

  • Lurton X (2002) An introduction to underwater acoustics, principles and applications. Springer, New York, 724p

    Google Scholar 

  • Maeder J, Narumalani S, Rundquist DC, Perk RL, Schalles J, Hutchins K, Keck J (2002) Classifying and mapping general coral-reef structure using IKONOS data. Photogramm Eng Remote Sens 68(12):1297–1305

    Google Scholar 

  • Makowski C (2014) Development and application of a new comprehensive image-based classification scheme for coastal and benthic environments along the Southeast Florida Continental Shelf. Florida Atlantic University, Boca Raton, Ph.D. dissertation, 303p

    Google Scholar 

  • Makowski C, Seminoff JA, Salmon M (2006) Home range and habitat use of juvenile Atlantic green turtles (Chelonia mydas) on shallow reef habitats in Palm Beach, Florida. Mar Biol 148:1167–1179

    Article  Google Scholar 

  • Makowski C, Finkl CW, Vollmer HM (2015) Geospatially integrated seafloor classification scheme (G-ISCS): a new method for cognitively interpreting benthic biogeomorphological features. J Coast Res 31(2):488–504

    Article  Google Scholar 

  • Marszalek DS, Babashoff Jr G, Noel MR, Worley DR (1977) Reef distribution in south Florida. In: Taylor DL (ed) Proceedings of the 3rd International Coral Reef Symposium. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 7p

    Google Scholar 

  • Massa F (1989) Sonar transducers. Sea Technol 30(11):39–48

    Google Scholar 

  • Mazel C (1985) Side scan sonar: record interpretation and training manual. Klein Associates, Los Angeles, 98p

    Google Scholar 

  • McGee TM (2000) Pushing the limits of high-resolution in marine seismic profiling. J Environ Eng Geophys 5(4):43–53

    Article  Google Scholar 

  • Mielck F, Hass HC, Betzler C (2014) High-resolution hydroacoustic seafloor classification of sandy environments in the German Wadden Sea. J Coast Res 30(6):1107–1117

    Article  Google Scholar 

  • Moody R (2007) Beyond plate tectonics: ‘Plate’ dynamics. Infinite Energy 74:1–13

    Google Scholar 

  • Moore LJ (2000) Shoreline mapping techniques. J Coast Res 16(1):111–124

    Google Scholar 

  • Mosher DC, Simpkin PG (1999) Status and trends of marine high-resolution seismic reflection: data acquisition. J Geol Assoc Can 26(4):174–188

    Google Scholar 

  • Mount R (2003) The application of digital aerial photography to shallow water seabed mapping and monitoring: how deep can you see? In: Proceedings of Coastal GIS 2003. University of Wollongong, Australia, 7–8 June 2003, 10p

    Google Scholar 

  • Mumby PJ, Edwards AJ (2002) Mapping marine environments with IKONOS imagery: enhanced spatial resolution can deliver greater thematic accuracy. Remote Sens Environ 82:248–257

    Article  Google Scholar 

  • Mumby PJ, Harborne AR (1999) Development of a systematic classification scheme of marine habitats to facilitate regional management and mapping of Caribbean coral reefs. Biol Conserv 88:155–163

    Article  Google Scholar 

  • Mumby PJ, Green EP, Edwards AJ, Clark CD (1999) The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. J Environ Manage 55(3):157–166

    Article  Google Scholar 

  • Muslim AM, Foody GM, Atkinson PM (2007) Shoreline mapping from coarse-spatial resolution remote sensing imagery of Seberang Takir, Malaysia. J Coast Res 23(6):1399–1408

    Article  Google Scholar 

  • O’Regan PR (1996) The use of contemporary information technologies for coastal research and management: a review. J Coast Res 12(1):192–204

    Google Scholar 

  • Officer CB (1958) Introduction to the theory of sound transmission with applications to the ocean. McGraw Hill, New York, 284p

    Google Scholar 

  • Palandro D, Andrefouet S, Dustan P, Muller-Karger FE (2003) Change detection in coral reef communities using IKONOS satellite sensor imagery and historical aerial photographs. Int J Remote Sens 24(4):873–878

    Article  Google Scholar 

  • Purkis SJ, Riegl B (2005) Spatial and temporal dynamics of Arabian Gulf coral assemblages quantified from remote-sensing and in situ monitoring data. Mar Ecol Prog Ser 287:99–113

    Article  Google Scholar 

  • Ramsey EW III, Laine SC (1997) Comparison of Landsat Thematic Mapper and high resolution photography to identify change in complex coastal wetlands. J Coast Res 13(2):281–292

    Google Scholar 

  • Richards DG (1980) Water-penetration aerial photography. Int J Naut Archaeol 9(4):331–337

    Article  Google Scholar 

  • Savini A, Corselli C, Durmishi C, Marku S, Morelli D, and Tessarolo C (2011) Geomorphology of the Vlora Gulf Seafloor: results from multibeam and high-resolution seismic data. In: Tursi A, Corselli C (eds) Coastal research in Albania: Vlora Gulf. J Coastal Res, Special Issue No. 58:6–16. West Palm Beach

    Google Scholar 

  • Scanlon KM (1989) Seismic-reflection and echo-sounder data from R/V FARNELIA Cruise FRNL 85-4 in the Puerto Rico and U.S. Virgin Islands Exclusive Economic Zone. U.S. Geological Survey Open-File Report 90-38, 6p

    Google Scholar 

  • Sheppard CR, Matheson K, Bythel JC, Murphy P, Myers CB, Blake B (1995) Habitat mapping in the Caribbean for management and conservation: use and assessment of aerial photography. Aquat Conserv 5:277–298

    Article  Google Scholar 

  • Shinn EA, Hudson JH, Halley RB, Lidz BH (1977) Topographic control and accumulation rate of some holocene coral reefs: South Florida and Dry Tortugas. In: Taylor DL (ed) Proceedings of the third international coral reef symposium, Miami, FL, USA, 7p

    Google Scholar 

  • Shoshany M, Degani A (1992) Shoreline detection by digital image processing of aerial photography. J Coast Res 8(1):29–34

    Google Scholar 

  • Smith CJ, Rumohr H (2005) Imaging techniques. In: Eleftheriou A, McIntyre A (eds) Methods for the study of marine benthos. Blackwell Science Ltd., Oxford, pp 87–111

    Google Scholar 

  • Smith GL, Zarillo GA (1990) Calculating long-term shoreline recession rates using aerial photographic and beach profiling techniques. J Coast Res 6(1):111–120

    Google Scholar 

  • Specht MR, Needler D, Fritz NL (1973) New color film for water photography penetration. Photogramm Eng Remote Sens 39:359–369

    Google Scholar 

  • Steimle JT, Finkl CW (2011) Interpretation of seafloor topologies based on IKONOS satellite imagery of a shallow-marine carbonate platform: Florida Bay to the Florida Reef Tract. In: FurmaÅ„czyk K, Giza A, Terefenko P (eds) Proceedings of the 11th International Coastal Symposium (ICS). J Coastal Res, Special Issue No. 64:825–830

    Google Scholar 

  • Stockdon HF, Sallenger AH, List JH, Holman RA (2002) Estimation of shoreline position and change using airborne topographic lidar data. J Coast Res 18(3):502–513

    Google Scholar 

  • Stockdon H, Doran KS, Sallenger AH Jr (2009) Extraction of lidar-based dune-crest elevations for use in examining the vulnerability of beaches to inundation during hurricanes. In: Brock J, Purkis S (eds) Coastal applications of airborne lidar. J Coastal Res, Special Issue No. 53:59–65

    Google Scholar 

  • Stoker JM, Tyler DJ, Turnipseed DP, Van Wilson K Jr, Oimoen MJ (2009) Integrating disparate lidar datasets for a regional storm tide inundation analysis of Hurricane Katrina. In: Brock J, Purkis S (eds) Coastal applications of airborne lidar. J Coastal Res, Special Issue No. 53:66–72

    Google Scholar 

  • Taylor Smith D, Li WN (1966) Echo-sounding and sea-floor sediments. Mar Geol 4(5):353–364

    Article  Google Scholar 

  • Thieler ER, Danforth WW (1994) Historical shoreline mapping (I): improving techniques and reducing positioning errors. J Coast Res 10(3):549–563

    Google Scholar 

  • Tiwari KC, Arora MK, Singh D (2011) An assessment of independent component analysis for detection of military targets from hyperspectral images. Int J Appl Earth Obs Geoinf 13(6):730–740

    Article  Google Scholar 

  • Urick RJ (1983) Principles of Underwater Sound, McGraw-Hill Ryerson, Ltd, Ontario, 423p

    Google Scholar 

  • Vaughan RG, Calvin WM, Taranik JV (2003) SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping. Remote Sens Environ 85:48–63

    Article  Google Scholar 

  • Verbeek NH, McGee TM (1995) Characteristics of high-resolution marine reflection profiling sources. J Appl Geophys 33:251–269

    Article  Google Scholar 

  • Walker BK, Riegl B, Dodge RE (2008) Mapping coral reef habitats in southeast Florida using a combined technique approach. J Coast Res 24(5):1138–1150

    Article  Google Scholar 

  • Xu G (2010) Sciences of geodesy – I: advances and future directions. Springer Publishing, Berlin, 281p

    Book  Google Scholar 

  • Yamano H, Shimazaki H, Matsunaga T, Ishoda A, McClennen C, Yokoki H, Fujita K, Osawa Y, Kayanne H (2006) Evaluation of various satellite sensors for waterline extraction in a coral reef environment: Majuro Atoll, Marshall Islands. Geomorphology 82:398–411

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Makowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Makowski, C., Finkl, C.W. (2016). History of Modern Seafloor Mapping. In: Finkl, C., Makowski, C. (eds) Seafloor Mapping along Continental Shelves. Coastal Research Library, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-25121-9_1

Download citation

Publish with us

Policies and ethics