Advertisement

Affine Coordinate-Based Parametrized Active Contours for 2D and 3D Image Segmentation

  • Qi Xue
  • Laura Igual
  • Albert Berenguel
  • Marité Guerrieri
  • Luis Garrido
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 550)

Abstract

In this paper, we present a new framework for image segmentation based on parametrized active contours. The contour and the points of the image space are parametrized using a set of reduced control points that form a closed polygon in two dimensional problems and a closed surface in three dimensional problems. The active contour evolves by moving the control points. The parametrization, that uses mean value coordinates, stems from the techniques used in computer graphics to animate virtual models. The proposed framework allows to easily formulate region-based energies as the one proposed by Chan and Vese in both two and three dimensional segmentation problems. We show the usefulness of our approach with several experiments.

Keywords

Active contours Affine coordinates Mean value coordinates 

Notes

Acknowledgments

Q. Xue would like to acknowledge support from Erasmus Mundus BioHealth Computing, L. Igual and L. Garrido from MICINN projects, reference TIN2012-38187- C03-01, MTM2012-30772 and TIN2013-43478-P, and from Catalan Government award 2014-SGR-1219.

References

  1. 1.
    Barbosa, D., Dietenbeck, T., Schaerer, J., D’hooge, J., Friboulet, D., Bernard, O.: B-spline explicit active surfaces: an efficient framework for real-time 3D region-based segmentation. IEEE Trans. Image Process. 21(1), 241–251 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Coquillart, S.: Extended free-form deformation: a sculpturing tool for 3d geometric modeling. SIGGRAPH 24(4), 187–196 (1990)CrossRefGoogle Scholar
  5. 5.
    Faloutsos, P., van de Panne, M., Terzopoulos, D.: Dynamic free-form deformations for animation synthesis. IEEE Trans. Visual. Comput. Graph. 3(3), 201–214 (1997)CrossRefGoogle Scholar
  6. 6.
    Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Getreuer, P.: Chan-vese segmentation. Image Processing On Line (2012)Google Scholar
  8. 8.
    Gouraud, H.: Continuous shading of curved surfaces. IEEE Trans. Comput. C–20(6), 623–629 (1971)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hormann, K., Floater, M.: Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph. 25(4), 1424–1441 (2006)CrossRefGoogle Scholar
  10. 10.
    Hormann, K., Greiner, G.: Continuous shading of curved surfaces. In: Curves and Surfaces Proceedings, pp. 152–163, Saint Malo, France (2000)Google Scholar
  11. 11.
    Jacob, M., Blu, T., Unser, M.: Efficient energies and algorithms for parametric snakes. IEEE Trans. Image Process. 13(9), 1231–1244 (2004)CrossRefGoogle Scholar
  12. 12.
    Joschi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. In: SIGGRAPH (2007)Google Scholar
  13. 13.
    Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. Proc. ACM SIGGRAPH 24, 561–566 (2005)CrossRefGoogle Scholar
  14. 14.
    Kalmoun, M., Garrido, K., Caselles, V.: Line search multilevel optimization as computational methods for dense optical flow. SIAM J. Imaging Sci. 4(2), 695–722 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)CrossRefzbMATHGoogle Scholar
  16. 16.
    Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lipman, Y., Kopf, J., Cohen-Or, D., Levin, D.: GPU-assisted positive mean value coordinates for mesh deformations. In: Eurographics Symposium on Geometry Processing (2007)Google Scholar
  18. 18.
    Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. In: SIGGRAPH (2008)Google Scholar
  19. 19.
    Michailovich, O., Rathi, Y., Tannenbaum, A.: Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE Trans. Image Process. 16(11), 2787–2801 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rousson, M., Deriche, R.: A variational framework for active and adaptative segmentation of vector valued images. In: Proceedings of the Workshop on Motion and Video Computing, pp. 56–61. IEEE Computer Society (2002)Google Scholar
  21. 21.
    Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Qi Xue
    • 1
    • 2
  • Laura Igual
    • 1
    • 3
  • Albert Berenguel
    • 1
    • 3
  • Marité Guerrieri
    • 4
  • Luis Garrido
    • 1
    • 3
  1. 1.Department of Applied Mathematics and AnalysisUniverity of BarcelonaBarcelonaSpain
  2. 2.Department of MathematicsTongji UniversityShanghaiChina
  3. 3.Computer Vision CenterBarcelonaSpain
  4. 4.Department of Computer Science and Applied MathematicsUniverity of GironaGironaSpain

Personalised recommendations