Skip to main content

Nonlinear Optical Effects of Plasmonic Nanoparticles

  • Chapter
  • First Online:
Optical Properties of Metallic Nanoparticles

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 232))

  • 1931 Accesses

Abstract

The light-matter interaction between metallic nanoparticles and an electromagnetic wave happens on a very fast time scale and, as we have discussed in Sect. 2.7, already after a few femtoseconds the plasmonic excitations start to vanish again . The temporal evolution and this ultrafast relaxation of surface plasmon polaritons is of central importance for many kinds of plasmonic applications. It is amazing that we can explore such rapid dynamic processes with experiments nowadays. One way to enter the ultrafast world of plasmon dephasing is given by nonlinear autocorrelation measurements, which allow us to determine sub-10 fs decay times. Usually a bandwidth-limited laser pulse working in the few-cycle regime is used to excite nonlinear effects which serve as a non-invasive monitor for the plasmon dynamics [1].

But the speed was power, and the speed was joy, and the speed was pure beauty Richard Bach, Jonathan Livingston Seagull

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Lamprecht, Ultrafast plasmon dynamics in metal nanoparticles. Ph.D. thesis, Institut für Physik, Karl-Franzens-Universität Graz, 2000.

  2. P.S. Pershan, Nonlinear optical properties of solids: energy considerations. Phys. Rev. 130, 919–929 (1963).

    Google Scholar 

  3. E. Adler, Nonlinear optical frequency polarization in a dielectric. Phys. Rev. 134, A728–A733 (1964).

    Google Scholar 

  4. M. Lippitz, M.A. van Dijk, M. Orrit, Third-harmonic generation from single gold nanoparticles. Nano Lett. 5, 799–802 (2005).

    Google Scholar 

  5. B.K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, M. Kauranen, Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett. 7, 1251–1255 (2007).

    Google Scholar 

  6. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, R. Bratschitsch, Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Lett. 12(2), 992–996 (2012).

    Google Scholar 

  7. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, A. Leitenstorfer, Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys. Rev. Lett. 103, 257404 (2009).

  8. J.E. Sipe, D.J. Moss, H.M. van Driel, Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. Phys. Rev. B 35, 1129–1141 (1987).

    Google Scholar 

  9. N. Bloembergen, W.K. Burns, M. Matsouka, Reflected third harmonic generated by picosecond laser pulses. Opt. Commun. 1, 195–198 (1969).

    Google Scholar 

  10. U. Gubler, C. Bosshard, Optical third-harmonic generation of fused silica in gas atmosphere: absolute value of the third-order nonlinear optical susceptibility χ (3). Phys. Rev. B 61, 10702–10710 (2000).

    Google Scholar 

  11. F. Krausz, E. Wintner, Atmospheric influences in optical third-harmonic generation experiments. App. Phys. B 49, 479–483 (1989).

    Google Scholar 

  12. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W.E. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3, 654–657 (2009).

    Google Scholar 

  13. M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photonics 6(11), 737–748 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trügler, A. (2016). Nonlinear Optical Effects of Plasmonic Nanoparticles. In: Optical Properties of Metallic Nanoparticles. Springer Series in Materials Science, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-25074-8_7

Download citation

Publish with us

Policies and ethics