Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 232))

  • 1918 Accesses

Abstract

Much has happened since the struggle between the devotees of the undulatory and corpuscular theory of light. For millennia we have been fascinated by optical phenomena and the groundbreaking works of many brilliant scientists allowed deep insights into the question of what holds the world together in its inmost folds . Step by step we gain more understanding of what light actually is [1]. In particular, the interaction of light with matter is a treasure trove for new applications and a demanding criterion for the underlying physical theories.

The electron is a theory we use; it is so useful in understanding the way nature works that we can almost call it real.

Richard Feynman

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Born 11th May 1918 in New York City; † 15th February 1988 in Los Angeles, California. Nobel Prize in Physics 1965.

  2. 2.

    For example the invention of the scanning tunneling microscope, the discovery of fullerenes , the development of fluorescence microscopy, etc.

  3. 3.

    As the modern version of the metric system, it is an achievement of the French Revolution and therefore still retains a French name.

References

  1. J. Heber, A. Trabesinger, Nature milestones: photons. Nat. Mater. 9, S5–S20 (2010).

    Google Scholar 

  2. R. Feynman, There is plenty of room at the bottom (talk transcript). Caltech Eng. Sci. 23(5), 22–36 (1960).

  3. N. Taniguchi (ed.), On the Basic Concept of Nano-Technology, Proceedings of the International Conference on Production Engineering, Part II (Japan Society of Precision Engineering, Tokyo, 1974)

    Google Scholar 

  4. K.E. Drexler, Molecular Machinery and Manufacturing with Applications to Computation. Ph.D. thesis, Massachusetts Institute of Technology (MIT), Cambridge, 1991.

  5. L. Novotny, B. Hecht, Principles of Nano-Optics, 2nd edn. (Cambridge University Press, Cambridge, 2012). ISBN 978-1107005464

  6. H. Atwater, The promise of plasmonics. Sci. Am. 296(4), 56 (2007).

    Google Scholar 

  7. I.H. El-Sayed, X. Huang, M.A. El-Sayed, Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006).

  8. J.M. Stern, J. Stanfield, W. Kabbani, J.-T. Hsieh, J.A. Cadeddu, Selective prostate cancer thermal ablation with laser activated gold nanoshells. The J. Urol. 179(2), 748–753 (2008).

    Google Scholar 

  9. J.Z. Zhang, Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer. J. Phys. Chem. Lett. 1(4), 686–695 (2010).

    Google Scholar 

  10. G.A. Sotiriou, F. Starsich, A. Dasargyri, M.C. Wurnig, F. Krumeich, A. Boss, J.-C. Leroux, S.E. Pratsinis, Photothermal killing of cancer cells by the controlled plasmonic coupling of silica-coated Au/Fe2O3 nanoaggregates. Adv. Funct. Mater. 24(19), 2818–2827 (2014).

    Google Scholar 

  11. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P.V. Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442 (2008).

    Google Scholar 

  12. A. Haes, R.P.V. Duyne, A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124, 10596 (2002).

    Google Scholar 

  13. P. Fortina, L.J. Kricka, D.J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, S.A. Waldman, Applications of nanoparticles to diagnostics and therapeutics in colorectal silver nanoparticles. J. Am. Chem. Soc. 124, 10596 (2007).

  14. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Google Scholar 

  15. H.J. Lezec, J.A. Dionne, H.A. Atwater, Negative refraction at visible frequencies. Science 316, 5823 (2007).

    Google Scholar 

  16. N.I. Zheludev, A roadmap for metamaterials. Opt. Photonics News 22, 30–35 (2011).

    Google Scholar 

  17. A. Polman, Plasmonics applied. Science 322(5903), 868–869 (2008).

    Google Scholar 

  18. T. Nagao, G. Han, C. Hoang, J.-S. Wi, A. Pucci, D. Weber, F. Neubrech, V.M. Silkin, D. Enders, O. Saito, M. Rana, Plasmons in nanoscale and atomic-scale systems. Sci. Technol. Adv. Mater. 11(5), 054506 (2010).

    Google Scholar 

  19. P. Zijlstra, J.M. Chon, M. Gu, Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009).

    Google Scholar 

  20. B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, J.C. Weeber, Surface plasmon propagation in microscale metal stripes. Appl. Phys. Lett. 79, 51 (2001).

    Google Scholar 

  21. S.I. Bozhevolnyi, V.S. Volkov, E. Deveaux, J.Y. Laluet, T.W. Ebbensen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 509 (2006).

    Google Scholar 

  22. A. Akimov, A. Mukherjee, C.L. Yu, D.E. Chang, A.S. Zibrov, P.R. Hemmer, H. Park, M.D. Lukin, Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    Google Scholar 

  23. R. Kolesov, B. Grotz, G. Balasubramanian, R.J. Stöhr, A.A.L. Nicolet, P.R. Hemmer, F. Jelezko, J. Wachtrup, Wave-particle duality of single surface plasmon polaritons. Nat. Phys. 5, 470–474 (2009).

    Google Scholar 

  24. R. Loudon, The Quantum Theory of Light (Oxford University Press, New York, 2000). ISBN 978-0198501763

  25. D.M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F.R. Aussenegg, A. Leitner, E.J.W. List, J.R. Krenn, Organic plasmon-emitting diode. Nat. Phot. 2, 684–687 (2008).

    Google Scholar 

  26. A.L. Falk, F.H.L. Koppens, C.L. Yu, K. Kang, N. de Leon Snapp, A.V. Akimov, M.-H. Jo, M.D. Lukin, H. Park, Near-field electrical detection of optical plasmons and single-plasmon sources. Nat. Phys. 5, 475–479 (2009).

    Google Scholar 

  27. V.E. Ferry, L.A. Sweatlock, D. Pacifici, H.A. Atwater, Plasmonic Nanostructure design for efficient light coupling into solar cells. Nano Lett. 8, 4391 (2008).

    Google Scholar 

  28. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962). ISBN 978-0-471-30932-1

  29. W.C. Chew, Waves and Fields in Inhomogeneous Media . IEEE PRESS Series on Electromagnetic Waves (IEEE Press, New York, 1995). ISBN 0-7803-4749-8

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trügler, A. (2016). Prologue. In: Optical Properties of Metallic Nanoparticles. Springer Series in Materials Science, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-25074-8_1

Download citation

Publish with us

Policies and ethics