Skip to main content

The Impact of Rainfall-Runoff Events on the Water Quality of the Upper Catchment of the Jordan River, Israel

  • Chapter
  • First Online:

Abstract

This study examined the influence of rainfall-runoff events on water quality of the Upper Catchment of the Jordan River (UCJR) with a special emphasize on P fate and transport. We sampled 60 locations across the catchment to test the hypothesis that under Mediterranean climate conditions, most of the nutrient losses from the fields to waterways will occur in few major events while the actual contributing areas will be limited to critical source areas (CSA). Water analyses included nutrients (SRP, TP, TSS, NO3, & NH4), fecal indicators (Fecal Coliforms, E-Coli and Enterococcus) and EC & pH. Spatial analysis was conducted to identify CSA. In general, the results demonstrated the influence of runoff events on the water quality in the UCJR and the high heterogeneity of these events in space and time. The study showed that the levels of SRP, TP, TSS as well as indicators of fecal contamination were primarily transported with surface runoff and increased significantly in the stream during these events. Phosphorous concentrations in some sub-catchments reached extremely high concentrations (19 mg/l) during runoff compared with an average of 1.9 mg/l for the entire watershed. The medium to high correlation between the fecal indicators, total P and TSS suggest that during runoff events, P and bacteria attached to soil particles were mobilized to the stream from CSA. Water sampling along the streams flow paths together with the spatial analysis, identified CSA where an elevated nutrient concentration has been identified. Autocorrelation test identified CSA where an external pollution source influences the water nutrients content. The study provides watershed management science-based remediation options to reduce the potential of water pollution during major rainfall-runoff events.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alpert P, Ben-Gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R, Michaelides S, Manes A (2002) The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett 29(11):31–34. doi:10.1029/2001GL013554

  • Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27(2):93–115. doi:10.1111/j.1538-4632.1995.tb00338.x

    Article  Google Scholar 

  • Anselin L (2003) GeoDa 0.9 User’s Guide. Spatial Analysis Laboratory, University of Illinois, Urbana-Champaign, IL

    Google Scholar 

  • APHA, AWWA, WEF (1998) Standard methods for the examination of water and wastewater. In: 20th edn. American public health association, American water works association water environment federation, Washington, D.C

    Google Scholar 

  • Berman T, Pollingher U, Zohary T (1998) A short history of stability and change in phytoplankton populations in Lake Kinneret. Isr J Plant Sci 46(2):73–80

    Article  Google Scholar 

  • Bowes MJ, House WA, Hodgkinson RA, Leach DV (2005) Phosphorus–discharge hysteresis during storm events along a river catchment: the River Swale, UK. Water Res 39(5):751–762. doi:10.1016/j.watres.2004.11.027

    Article  CAS  PubMed  Google Scholar 

  • Brody SD, Highfield W, Peck BM (2005) Exploring the mosaic of perceptions for water quality across watersheds in San Antonio, Texas. Landscape Urban Plan 73:200–214. doi:10.1016/j.landurbplan.2004.11.010

    Article  Google Scholar 

  • Burton GA, Gunnison D, Lanza GR (1987) Survival of pathogenic bacteria in various freshwater sediments. Appl Environ Microbiol 53:633–638

    PubMed  PubMed Central  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568

    Article  Google Scholar 

  • Edelmann P, Ferguson SA, Stogner Sr RW, August M, Payne WF, Bruce JF (2002) Evaluation of water quality, suspended sediment, and stream morphology with an emphasis on effects of stormflow on fountain and monument creek basins, colorado springs and vicinity, Colorado, 1981 through 2001. Water Resources of Colorado. US Department of the Interior, US Geological Survey

    Google Scholar 

  • Edwards A, Withers P (1998) Soil phosphorus management and water quality: a UK perspective. Soil Use Manage 14(s4):124–130

    Article  Google Scholar 

  • Eghball B, Gilley JE (1999) Phosphorus and nitrogen in runoff following beef cattle manure or compost application. J Environ Qual 28(4):1201–1210

    Article  CAS  Google Scholar 

  • Feijoo CS, Giorgi A, Garc´ıa MıE, Momo F (1999) Temporal and spatial variability in streams of a pampean basin. Hydrobiologia 394:41–52

    Google Scholar 

  • Franklin DH, Steiner JL, Cabrera ML, Usery EL (2002) Distribution of inorganic nitrogen and phosphorus concentrations in stream flow of two southern piedmont watersheds. J Environ Qual 31:1910–1917

    Article  CAS  PubMed  Google Scholar 

  • Franklin DH, Steiner JL, Duke SE, Moriasi DN, Starks PJ (2013) Spatial considerations in wet and dry periods for phosphorus in streams of the fort cobb watershed, United States. JAWRA J Am Water Res Assoc 49(4):908–922. doi:10.1111/jawr.12048

    Article  CAS  Google Scholar 

  • Fries JS, Characklis GW, Noble RT (2006) Attachment of fecal indicator bacteria to particles in the Neuse River Estuary, N.C. J Envir Eng 132(10):1338–1345. doi:10.1061/(ASCE)0733-9372(2006)132:10(1338)

  • Gburek WJ, Sharpley AN, Heathwaite L, Folmar GJ (2000) Phosphorus management at the watershed scale: a modification of the phosphorus index. J Environ Qual 29(1):130–144

    Article  CAS  Google Scholar 

  • Gilad D, Schwartz S (1978) Hydrogeology of the Jordan sources aquifers. Isr Hydrol Serv Rep. Hydro/5/78 (in Hebrew)

    Google Scholar 

  • Hadas O, Pinkas R, Malinsky-Rushansky N, Shalev-Alon G, Delphine E, Berner T, Sukenik A, Kaplan A (2002) Physiological variables determined under laboratory conditions may explain the bloom of Aphanizomenon ovalisporum in Lake Kinneret. Eur J Phycol 37(2):259–267. doi:10.1017/S0967026202003645

    Article  Google Scholar 

  • Heathwaite AL, Fraser AI, Johnes PJ, Hutchins M, Lord E, Butterfield D (2003) The Phosphorus Indicators Tool: a simple model of diffuse P loss from agricultural land to water. Soil Use Manage 19(1):1–11

    Article  Google Scholar 

  • Houser JN, Mulholland PJ, Maloney KO (2006) Upland disturbance affects headwater stream nutrients and suspended sediments during baseflow and stormflow. J Environ Qual 35:352–365. doi:10.2134/jeq2005.0102

    Article  CAS  PubMed  Google Scholar 

  • Howarth R, Anderson D, Cloern J, Elfring C, Hopkinson C, Lapointe B, Malone T, Marcus N, McGlathery K, Sharpley A, Walker D (2000) Nutrient pollution of Coastal Rivers, Bays, and Seas. Issues Ecol 7:1–14

    Google Scholar 

  • James E, Kleinman P, Veith T, Stedman R, Sharpley A (2007) Phosphorus contributions from pastured dairy cattle to streams of the Cannonsville Watershed, New York. J Soil Water Conserv 62(1):40–47

    Google Scholar 

  • Jamieson RC, Joy DM, Lee H, Kostaschuk R, Gordon RJ (2005) Resuspension of sediment-associated escherichia coli in a natural stream. J Environ Qual 34:581–589. doi:10.2134/jeq2005.0581

    Article  CAS  PubMed  Google Scholar 

  • Kronvang B, Laubel A, Grant R (1997) Suspended sediment and particulate phosphorus transport and delivery pathways in an arable catchment, Gelbæk stream, Denmark. Hydrol Process 11(6):627–642. doi:10.1002/(SICI)1099-1085(199705)11:6<627:AID-HYP481>3.0.CO;2-E

    Article  Google Scholar 

  • Kurz I, O’Reilly CD, Tunney H (2006) Impact of cattle on soil physical properties and nutrient concentrations in overland flow from pasture in Ireland. Agric Ecosyst Environ 113(1–4):378–390

    Article  CAS  Google Scholar 

  • Lemunyon JL, Gilbert RG (1993) The concept and need for a phosphorus assessment-tool. J Prod Agric 6(4):483–486

    Article  Google Scholar 

  • Litaor MI, Eshel G, Sade R, Rimmer A, Shenker M (2008) Hydrogeological characterization of an altered wetland. J Hydrol 349(3–4):333–349. doi:10.1016/j.jhydrol.2007.11.007

    Article  Google Scholar 

  • Little JL, Bennett DR, Miller JJ (2005) Nutrient and sediment losses under simulated rainfall following manure incorporation by different methods. J Environ Qual 34(5):1883–1895

    Article  CAS  PubMed  Google Scholar 

  • McDowell R, Sharpley A (2002) The effect of antecedent moisture conditions on sediment and phosphorus loss during overland flow: Mahantango Creek catchment, Pennsylvania, USA. Hydrol Process 16(15):3037–3050

    Article  Google Scholar 

  • McDowell RW, Drewry JJ, Muirhead RW, Paton RJ (2005) Restricting the grazing time of cattle to decrease phosphorus, sediment and E-coli losses in overland flow from cropland. Aust J Soil Res 43(1):61–66. doi:10.1071/SR04041

    Article  Google Scholar 

  • Murphy J, Johnson D, Miller W, Walker R, Carroll E, Blank R (2006) Wildfire effects on soil nutrients and leaching in a Tahoe Basin watershed. J Environ Qual 35(2):479–489

    Article  CAS  PubMed  Google Scholar 

  • Oliver DM, Heathwaite L, Haygarth PM, Clegg CD (2005) Transfer of Escherichia coli to water from drained and undrained grassland after Grazing. J Environ Qual 34(3):918–925. doi:10.2134/jeq2004.0327

    Article  CAS  PubMed  Google Scholar 

  • Pionke HB, Gburek WJ, Schnabel RR, Sharpley AN, Elwinger GF (1999) Seasonal flow, nutrient concentrations and loading patterns in stream flow draining an agricultural hill-land watershed. J Hydrol 220(1–2):62–73. doi:10.1016/S0022-1694(99)00064-5

    Article  CAS  Google Scholar 

  • Pionke HB, Gburek WJ, Sharpley AN, Schnabel RR (1996) Flow and nutrient export patterns for an agricultural hill-land watershed. Water Resour Res 32(6):1795–1804. doi:10.1029/96WR00637

    Article  CAS  Google Scholar 

  • Preston SD, Alexander RB, Schwarz GE, Crawford CG (2011) Factors affecting stream nutrient loads: a synthesis of regional SPARROW model results for the continental united states1. JAWRA J Am Water Resour Assoc 47(5):891–915. doi:10.1111/j.1752-1688.2011.00577.x

    Article  CAS  PubMed  Google Scholar 

  • Quinn JM, Steoud MJ (2002) Water quality and sediment and nutrient export from New Zealand hill-land catchments of contrasting land use. NZ J Mar Freshwat Res 36:409–429

    Article  CAS  Google Scholar 

  • Reichmann O, Chen Y, Litaor MI (2013) Spatial model assessment of p transport from soils to waterways in an eastern mediterranean watershed. Water 5(1):262–279. doi:10.3390/w5010262

    Article  CAS  Google Scholar 

  • Sade R, Litaor M, Shenker M (2010) Evaluation of groundwater and phosphorus transport in fractured altered wetland soils. J Hydrol 393(1):133–142

    Article  CAS  Google Scholar 

  • Samuels R, Smiatek G, Krichak S, Kunstmann H, Alpert P (2011) Extreme value indicators in highly resolved climate change simulations for the Jordan River area. J Geophys Res 116:D24123. doi:10.1029/2011JD016322

    Google Scholar 

  • Schoumans O, Chardon WJ, Bechmann M, Gascuel-Odoux C, HofmanG, Kronvang B, Litaor MI, Lo Porto A, Newwell-Price P, Rubaek G (2011) Overview and evaluation of mitigation options for reducing nutrient emission from agriculture to groundwater and surface water. In: A study amongst European members states of EC-COST Action 869. Alterra Report 2141 ISSN 1566–7197

    Google Scholar 

  • Sharpley AN, Kleinman PJA, Heathwaite AL, Gburek WJ, Folmar GJ, Schmidt JR (2008) Phosphorus loss from an agricultural watershed as a function of storm size. J Environ Qual 37(2):362–368

    Article  CAS  PubMed  Google Scholar 

  • Sharpley AN, Rekolainen S (1997) Phosphorus in agriculture and its environmental implications. In: Tunney H, Carton OT, Brookes PC, Johnston AE (eds) Phosphorus loss from soil to water. CAB International Press, Cambridge, pp 1–54

    Google Scholar 

  • Shore LS, Reichmann O, Shemesh M, Wenzel A, Litaor MI (2004) Washout of accumulated testosterone in a watershed. Sci Total Environ 332:193–202

    Article  CAS  PubMed  Google Scholar 

  • Simpson B, Carmi I (1983) The hydrology of the Jordan tributaries (Israel): hydrographic and isotopic investigation. J Hydrol 62(1):225–242

    Article  Google Scholar 

  • Stephenson GR, Rychert RC (1982) Bottom sediment: a reservoir of Escherichia coli in Rangeland streams. J Range Manage 35:119–123. doi:10.2307/3898537

    Article  Google Scholar 

  • Svendsen LM, Kronvang B, Kristensen P, Græsbøl P (1995) Dynamics of phosphorus compounds in a lowland river system: Importance of retention and non-point sources. Hydrol Process 9(2):119–142. doi:10.1002/hyp.3360090202

    Article  Google Scholar 

  • Tarkalson DD, Mikkelsen RL (2004) Runoff phosphorus losses as related to phosphorus source, application method, and application rate on a piedmont soil. J Environ Qual 33:1424–1430

    Article  CAS  PubMed  Google Scholar 

  • Tielbörger K, Claus C, Schloz D, Twite R, Al-Karablieh E, Salman A, Jayyousi A, Alpert P (2016) Sustainable water and land management under global change—the GLOWA Jordan River Project. In: Borchardt D, Bogardi J, Ibisch R (eds) Integrated water resources management: concept, research and implementation. Springer, Berlin

    Google Scholar 

  • Torrent J, Barberis E, Gil-Sotres F (2007) Agriculture as a source of phosphorus for eutrophication in southern Europe. Soil Use Manage 23:25–35

    Article  Google Scholar 

  • Tyrrel SF, Quinton JN (2003) Overland flow transport of pathogens from agricultural land receiving faecal wastes. J Appl Microbiol 94:87–93. doi:10.1046/j.1365-2672.94.s1.10.x

    Article  Google Scholar 

  • Udawatta RP, Motavalli PP, Garrett HE (2004) Phosphorus loss and runoff characteristics in three adjacent agricultural watersheds with claypan soils. J Environ Qual 33:1709–1719

    Article  CAS  PubMed  Google Scholar 

  • Withers PJA, Jarvie HP (2008) Delivery and cycling of phosphorus in rivers: a review. Sci Total Environ 400(1–3):379–395

    Article  CAS  PubMed  Google Scholar 

  • Withers PJA, Jarvie HP, Hodgkinson RA, Palmer-Felgate EJ, Bates A, Neal M, Howells R, Withers CM, Wickham HD (2009) Characterization of phosphorus sources in rural watersheds. J Environ Qual 38(5):1998–2011. doi:10.2134/jeq2008.0096

    Article  CAS  PubMed  Google Scholar 

  • Withers PJA, Lord EI (2002) policy, enAgricultural nutrient inputs to rivers and groundwaters in the UK: policy, environmental management and research needs. Sci Total Environ 282–283:9–24. doi:10.1016/S0048-9697(01)00935-4

    Article  PubMed  Google Scholar 

  • Yosef Y, Saaroni Y, Alpert P (2009) Trends in daily rainfall intensity over Israel 1950/1-2003/4. Open Atmos Sci J 3:196–203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oren Reichmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reichmann, O., Chen, Y., Litaor, I.M. (2016). The Impact of Rainfall-Runoff Events on the Water Quality of the Upper Catchment of the Jordan River, Israel. In: Borchardt, D., Bogardi, J., Ibisch, R. (eds) Integrated Water Resources Management: Concept, Research and Implementation. Springer, Cham. https://doi.org/10.1007/978-3-319-25071-7_6

Download citation

Publish with us

Policies and ethics