Skip to main content

Multidisciplinary Investigations of the Transboundary Dead Sea Basin and Its Water Resources

  • Chapter
  • First Online:
Book cover Integrated Water Resources Management: Concept, Research and Implementation

Abstract

Israel, the Palestinian Authorities and Jordan exploit the transboundary water resources of the Dead Sea basin. Our aim was to add reliable numbers to the water budget of the lake, despite the complicated integrative work and data acquisition due to the tense political situation. We here outline four parts of the project that generally concern surface and groundwater influx to the Dead Sea: (i) direct and non-direct measurements and hydrological modelling to quantify surface runoff, (ii) chemical fingerprinting to characterize groundwater origin, flow, and evolution between recharge and discharge areas, (iii) thermal remote sensing approaches to precisely identify location and abundance of groundwater discharge and (iv) groundwater modelling to quantify discharge volumes. The major outcomes are: (i) total mean annual runoff volumes from side wadis (except the Jordan River ) entering the Dead Sea amounts to approximately 58−66 × 106 m3 a−1, (ii) area normalised recharge amounts differ on both sides being ~45 mm/a at the western side and ~32 mm/a at the eastern side, (iii) modelled groundwater discharge volumes from Upper Cretaceous aquifers from both sides are in order of magnitude of 177 × 106 m3 a−1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson M, Yechieli Y, Crouvi O, Baer G, Wachs D, Bein A, Shtivelman V (2006) Evolution of the Dead Sea sinkholes. Geol Soc Am Spec Pap 401:241–253. doi:10.1130/2006.2401(16)

    Google Scholar 

  • Al-Raggad M (2009) GIS-based flow modeling and hydrogeochemical assessment of the northern part of the Dead Sea groundwater basin—a tool for groundwater management. PhD thesis, University of Jordan, Amman, Jordan

    Google Scholar 

  • Al-Weshah RA (2000) The water balance of the Dead Sea: an integrated approach. Hydrol Process 14(1):145–154. doi:10.1002/(sici)1099-1085(200001)14:1<145:aid-hyp916>3.0.co;2-n

    Article  Google Scholar 

  • Alkhoury W (2011) Hydrological modelling in the meso scale semiarid region of Wadi Kafrein/Jordan—the use of innovative techniques under data scarcity. PhD thesis, Georg-August-University Göttingen, Germany

    Google Scholar 

  • Arkin Y, Gilat A (2000) Dead Sea sinkholes—an ever-developing hazard. Environ Geol 39(7):711–722. doi:10.1007/s002540050485

    Article  Google Scholar 

  • Asmar BN, Ergenzinger P (2002) Dynamic simulation of the Dead Sea. Adv Water Resour 25(3):263–277. doi:10.1016/S0309-1708(01)00063-X

    Article  CAS  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke AAS, Whetton P (2007) Regional climate projections. In: Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change Cambridge, United Kingdom and New York

    Google Scholar 

  • Cohen H, Laronne JB (2005) High rates of sediment transport by flashfloods in the Southern Judean Desert. Isr Hydrol Process 19(8):1687–1702. doi:10.1002/hyp.5630

    Article  Google Scholar 

  • El-Naqa A, Al-Shayeb A (2009) Groundwater protection and management strategy in Jordan. Water Resour Manage J 23(12):2379–2394

    Article  Google Scholar 

  • EXACT (1998) Overview of middle east water resources—water resources of Palestinian, Jordanian, and Israeli Interest. Middle East Water Data Banks Project (EXACT)

    Google Scholar 

  • Farber E, Vengosh A, Gavrieli I, Marie A, Bullen TD, Mayer B, Holtzman R, Segal M, Shavit U (2004) The origin and mechanisms of salinization of the lower Jordan river. Geochim Cosmochim Acta 68(9):1989–2006. doi:10.1016/j.gca.2003.09.021

    Article  CAS  Google Scholar 

  • Filin S, Baruch A, Avni Y, Marco S (2011) Sinkhole characterization in the Dead Sea area using airborne laser scanning. Nat Hazards 58(3):1135–1154. doi:10.1007/s11069-011-9718-7

    Article  Google Scholar 

  • Gavrieli I, Yechieli Y, Halicz L, Spiro B, Bein A, Efron D (2001) The sulfur system in anoxic subsurface brines and its implication in brine evolutionary pathways: the Ca-chloride brines in the Dead Sea area. Earth Planet Sci Lett 186(2):199–213. doi:10.1016/s0012-821x(01)00247-3

    Article  CAS  Google Scholar 

  • Gräbe A, Rödiger T, Rink K, Fischer T, Sun F, Wang W, Siebert C, Kolditz O (2013) Numerical analysis of the groundwater regime in the western Dead Sea escarpment, Israel + West Bank. Environ Earth Sci 69:571–585. doi:10.1007/s12665-012-1795-8

    Google Scholar 

  • Greenman A (2009) Estimation of surface water volume and quality discharging into the Dead Sea. Msc. thesis, Ben Gurion University of the Negev, Be’er Sheva, Israel

    Google Scholar 

  • Guttman Y (2000) Hydrogeology of the Eastern Aquifer in the Judea Hills and Jordan Valley. In: Multi-lateral project—project 02WT9719 within the framework of the German-Israeli-Jordanian-Palestinian joint research program for the sustainable utilization of aquifer systems. Mekorot

    Google Scholar 

  • Hact A, Gertman I (2003) Dead Sea Meteorological Climate. In: Nevo E, Oren A, Wasser SP (eds) Fungal life in the dead sea. international center for cryptogamic plants and Fungi, Institute of Evolution, University of Haifa, Israel, Haifa, p 361

    Google Scholar 

  • Holtzman R, Shavit U, Segal-Rozenhaimer M, Gavrieli I, Marei A, Farber E, Vengosh A (2005) Mixing Processes along the Lower Jordan River. J Environ Qual 34(3):897–906

    Article  CAS  PubMed  Google Scholar 

  • IHS (2012) Spring discharge measurements along the Dead Sea. Israel Hydrological Service (unpublished), Jerusalem

    Google Scholar 

  • Ijam AZ, Al-Mahamid MH (2012) Predicting sedimentation at Mujib dam reservoir in Jordan. Jordan J Civil Eng 6(4):448–463

    Google Scholar 

  • Ijam AZ, Tarawneh ER (2012) Assessment of sediment yield for Wala dam catchment are in Jordan. Eur Water 38:43–58

    Google Scholar 

  • Ionescu D, Siebert C, Polerecky L, Munwes YY, Lott C, Häusler S, Bižić-Ionescu M, Quast C, Peplies J, Glöckner FO, Ramette A, Rödiger T, Dittmar T, Oren A, Geyer S, Stärk H-J, Sauter M, Licha T, Laronne JB, de Beer D (2012) Microbial and chemical characterization of underwater fresh water springs in the Dead Sea. PLoS One 7(6):e38319. doi:10.1371/journal.pone.0038319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • JVA (2013) Homepage of the Jordan Valley Authority. www.jva.gov.jo. Accessed 21 Aug 2013

  • Katz A, Starinsky A (2009) Geochemical history of the Dead Sea. Aquat Geochem 15(1–2):159–194. doi:10.1007/s10498-008-9045-0

    Article  CAS  Google Scholar 

  • Kiro Y, Yechieli Y, Lyakhovsky V, Shalev E, Starinsky A (2008) Time response of the water table and saltwater transition zone to a base level drop. Water Resour Res 44(12):W12442 12441–12415. doi:10.1029/2007wr006752

  • Krause P, Biskop S, Helmschrot J, Flügel WA, Kang S, Gao T (2010) Hydrological system analysis and modelling of the Nam Co basin in Tibet. Adv Geosci 27:29–36. doi:10.5194/adgeo-27-29-2010

    Article  Google Scholar 

  • Laronne Ben-Itzhak L, Gvirtzman H (2005) Groundwater flow along and across structural folding: an example from the Judean Desert, Israel. Isr J Hydrol 312(1–4):51–69. doi:10.1016/j.jhydrol.2005.02.009

    Article  Google Scholar 

  • Lensky NG, Dvorkin Y, Lyakhovsky V, Gertman I, Gavrieli I (2005) Water, salt, and energy balances of the Dead Sea. Water Resour Res 41(12):W12418. doi:10.1029/2005wr004084

    Article  Google Scholar 

  • Mallast U, Gloaguen R, Friesen J, Rödiger T, Geyer S, Merz R, Siebert C (2014) How to identify groundwater-caused thermal anomalies in lakes based on multi-temporal satellite data in semi-arid regions. Hydrol Earth Syst Sci 18:2773–2787. doi:10.5194/hess-18-2773-2014

    Google Scholar 

  • Mallast U, Siebert C, Wagner B, Sauter M, Gloaguen R, Geyer S, Merz R (2013) Localisation and temporal variability of groundwater discharge into the Dead Sea using thermal satellite data. Environ Earth Sci 69(2):587–603. doi:10.1007/s12665-013-2371-6

    Google Scholar 

  • Mazor E, Rosenthal E, Ekstein J (1969) Geochemical tracing of mineral water sources in the South Western Dead Sea Basin, Israel. J Hydrol 7(3):246–248

    Google Scholar 

  • Mekorot (2012) personal communication. Tel Aviv, Israel

    Google Scholar 

  • Menzel L, Teichert E, Weiß M (2007) Climate change impact on the water resources of the semi-arid Jordan region. In: Heinonen M (ed) Proceedings of 3rd international conference on climate and water, Helsinki, Finnland, pp 320–325

    Google Scholar 

  • Möller P, Rosenthal E, Dulski P, Geyer S, Guttman Y (2003) Rare earths and yttrium hydrostratigraphy along the Lake Kinneret-Dead Sea-Arava transform fault, Israel and adjoining territories. Appl Geochem 18(10):1613–1628

    Article  Google Scholar 

  • Murakami M (1996) Managing water for peace in the middle east: alternative strategies. United Nations University Press

    Google Scholar 

  • PHG (2012) personal communication

    Google Scholar 

  • PWA P (2010) personal communication

    Google Scholar 

  • Rödiger T, Geyer S, Mallast U, Merz R, Krause P, Fischer C, Siebert C (2014) Multi-response calibration of a conceptual hydrological model in the semiarid catchment of Wadi al Arab, Jordan. J Hydrol 509:193–206. doi:10.1016/j.jhydrol.2013.11.026

    Google Scholar 

  • Sachse A, Wang W, Schulz S, Fischer T, Rödiger T, Kolditz O (in prep.) One-way coupling of a hydrological model and a groundwater flow model in a semi-arid to arid catchment

    Google Scholar 

  • Salameh E (1996) Water Quality Degradation in Jordan (Impacts on Environment, Economy and Future Generations Resources Base). Royal Society for the Conservation of Nature, Amman, Friedrich Ebert Stiftung

    Google Scholar 

  • Salameh E, El-Naser H (1999) Does the Actual Drop in Dead Sea Level Reflect the Development of Water Sources Within its Drainage Basin? Acta Hydrochim Hydrobiol 27(1):5–11. doi:10.1002/(sici)1521-401x(199901)27:1<5:aid-aheh5>3.0.co;2-z

    Article  CAS  Google Scholar 

  • Salameh E, El-Naser H (2000) Changes in the Dead Sea Level and their Impacts on the Surrounding Groundwater Bodies. Acta Hydrochim Hydrobiol 28(1):24–33. doi:10.1002/(sici)1521-401x(200001)28:1<24:aid-aheh24>3.0.co;2-6

    Article  CAS  Google Scholar 

  • Salameh E, Hammouri R (2008) Sources of groundwater salinity along the flow path, Disi-Dead Sea/Jordan. Environ Geol 55(5):1039–1053. doi:10.1007/s00254-007-1053-7

    Article  CAS  Google Scholar 

  • Shalev E, Lyakhovsky V, Yechieli Y (2007) Is advective heat transport significant at the Dead Sea basin? Geofluids 7(3):292–300. doi:10.1111/j.1468-8123.2007.00190.x

    Article  Google Scholar 

  • Siebert C (2006) Reasons for seasonal chemical fluctuation in Sea of Galilee and its contributors. PhD Thesis, Freie Universität, Berlin

    Google Scholar 

  • Siebert C, Geyer S, Möller P, Berger D, Guttman Y (2009) Lake Tiberias and its dynamic hydrochemical environment. In: Möller P, Rosenthal P (eds) The water of the Jordan Valley. Springer, Berlin

    Google Scholar 

  • Siebert C, Rosenthal P, Möller P, Rödiger T, Meiler M (2012) The hydrochemical identification of groundwater flowing to the Bet She’an-Harod multiaquifer system (Lower Jordan Valley) by rare earth elements, yttrium, stable isotopes (H, O) and Tritium. Appl Geochem 27:703–714

    Article  CAS  Google Scholar 

  • Siebert C, Rödiger T, Mallast U, Gräbe A, Guttman Y, Laronne JB, Storz-Peretz Y, Greenman A, Salameh E, Al-Raggad M, Vachtman D, Ben Zvi A, Ionescu D, Brenner A, Merz R, Geyer S (2014a) Challenges to estimate surface-and groundwater flow in arid regions—the western and eastern Dead Sea catchments. Sci Total Environ 485(486):828–841

    Article  PubMed  Google Scholar 

  • Siebert C, Möller P, Geyer S, Kraushaar S, Dulski P, Guttman J, Subah A, Rödiger T (2014b) Thermal waters in the Lower Yarmouk Gorge and their relation to surrounding aquifers Chem. Erde-Geochemistry 74:425–441

    Google Scholar 

  • Storz-Peretz Y (2012) The morpho-textural characterization of dryland braided channels and their humid counterparts: Hydrological regime as key driver. Ben Gurion University of the Negev, Beer Sheva, Israel

    Google Scholar 

  • SWITCH (2006) House of water & environment

    Google Scholar 

  • USGS (2009) SRTM v2.1 Topography, USGS, http://eros.usgs.gov

  • Weinberger G, Livshitz Y, Givati A, Zilberbrand M, Tal A, Weiss M, Zurieli A (2012) The natural water resources between the Mediterranean Sea and the Jordan River. Isr Hydrol Serv, Jerusalem

    Google Scholar 

  • Yechieli Y, Ronen D, Kaufman A (1996) The source and age of groundwater brines in the Dead Sea area, as deduced from 36Cl and 14C. Geochim Cosmochim Acta 60(11):1909–1916. doi:10.1016/0016-7037(96)00065-8

    Article  CAS  Google Scholar 

  • Yechieli Y, Sivan O (2011) The distribution of saline groundwater and its relation to the hydraulic conditions of aquifers and aquitards: examples from Israel. Hydrogeol J 19(1):71–81. doi:10.1007/s10040-010-0646-5

    Article  CAS  Google Scholar 

  • Zamler D (2013) Water discharge of floods based on non-contact measurement of surface water velocity. Msc. thesis, Ben-Gurion University of the Negev, Be’er Sheva, Israel

    Google Scholar 

Download references

Acknowledgements

We thank the German Ministry of Education and Research, BMBF for granting the IWRM-Project “Sustainable Management of Water Resources (Quantity and Quality) in the Dead Sea Area (SUMAR )”; grant code 02WM0848. Toda raba to the Dead Sea Rescue team and Omar Cohen, Jake Ben Zaken from Ein Gedi for strong logistic support, Yaniv Munwes for field assistance, Daniel Ionescu and Christian Lott for diving, Isaac Gertman (IOLR), Yossi Guttman (Mekorot) and the Ein Feshkha NPA Rangers for their intense support. Furthermore Gabi Weinberger, Amir Givati and Udi Galili (IHS) for providing spring discharge data. We are also grateful to OFEK, Uwe Maraschek (BGR) and Gerhard Kemper (GGS-GmbH) for their help in planning and operating all flights. Particular thanks are addressed to Dr. Metzger and Mrs. Berggötz-Karich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Siebert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Siebert, C. et al. (2016). Multidisciplinary Investigations of the Transboundary Dead Sea Basin and Its Water Resources. In: Borchardt, D., Bogardi, J., Ibisch, R. (eds) Integrated Water Resources Management: Concept, Research and Implementation. Springer, Cham. https://doi.org/10.1007/978-3-319-25071-7_5

Download citation

Publish with us

Policies and ethics