Skip to main content

Monounsaturated Fatty Acid Mediated Liver-Adipose Tissue Crosstalk and Metabolic Regulation

  • Chapter
  • First Online:
Hepatic De Novo Lipogenesis and Regulation of Metabolism
  • 1443 Accesses

Abstract

The maintenance of metabolic health requires complex regulation of metabolic processes in several tissues. The coordination of this metabolic regulation involves extensive crosstalk among tissues. Signaling factors that are secreted into the circulation and impart systemic metabolic effects include molecules such as hepatokines, adipokines and lipokines. Many of these factors regulate lipid metabolism, including de novo lipogenesis. Monounsaturated fatty acids, palmitoleate and oleate, are major products of de novo lipogenesis and exert significant control over metabolic regulation. These fatty acids may circulate as free or esterified forms and subsequently influence metabolic processes in tissues distinct from the ones in which they are synthesized. Examples include the effects of hepatic palmitoleate and oleate in adipose tissue and of adipose tissue-derived palmitoleate in liver. This chapter reviews secreted factors that regulate metabolic processes with a focus on lipids and fatty acids and communication between liver and adipose tissues mediated by these species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appleton SL, Seaborn CJ, Visvanathan R, Hill CL, Gill TK, Taylor AW, Adams RJ (2013) Diabetes and cardiovascular disease outcomes in the metabolically healthy phenotype. Diabetes Care 36:2388–2394

    Article  PubMed  PubMed Central  Google Scholar 

  • Arregui M et al (2012) Heterogeneity of the stearoyl-CoA desaturase-1 (SCD1) gene and metabolic risk factors in the EPIC-Potsdam study. PLoS One 7, e48338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AFH, Stoehr JP, Hayden MR, Ntambi JM (2002) Relationship between stearoyl-CoA desaturase and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res 43:1899–1907

    Article  CAS  PubMed  Google Scholar 

  • Beaven SW et al (2013) Reciprocal regulation of hepatic and adipose lipogenesis by liver x receptors in obesity and insulin resistance. Cell Metab 18:106–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burhans MS, Flowers MT, Harrington KR, Bond LM, Guo C-A, Anderson RM, Ntambi JM (2015) Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation. J Lipid Res 56:304–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H (2014) Adipocytokines in obesity and metabolic disease. J Endocrinol 220:T47–T59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H et al (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134:933–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention (2004) Prevalence of overweight and obesity among adults with diagnosed diabetes—United States, 1988–1994 and 1999–2002. MMWR Morb Mortal Wkly Rep 53:1066–1068

    Google Scholar 

  • Chakravarthy MV et al (2009) Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 138:476–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eissing L et al (2013) De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nat Commun 4:1528

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabbrini E et al (2011) Insulin sensitivity is not associated with palmitoleate availability in obese humans. J Lipid Res 52:808–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers MT, Ade L, Strable MS, Ntambi JM (2012) Combined deletion of SCD1 from adipose tissue and liver does not protect mice from obesity. J Lipid Res 53:1646–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass GK, Olefsky JM (2012) Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab 15:635–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X et al (2012) Palmitoleate induces hepatic steatosis but suppresses liver inflammatory response in mice. PLoS One 7, e39286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman MA et al (2012) A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484:333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinnouho GM, Czernichow S, Dugravot A, Batty GD, Kivmaki M, Singh-Manoux A (2013) Metabolically healthy obesity and risk of mortality. Diabetes Care 36:2294–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iroz A, Couty J-P, Postic C (2015) Hepatokines: unlocking the multi-organ network in metabolic diseases. Diabetologia 58(8):1699–1703

    Article  CAS  PubMed  Google Scholar 

  • Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharitonenkov A, Shiyanova TL, Koester A, Formd AM, Micanovic R, Galbreath EJ et al (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115:1627–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer CK, Zinman B, Retnakaran R (2013) Are metabolically healthy overweight and obesity benign conditions? Ann Intern Med 159:758–769

    Article  PubMed  Google Scholar 

  • Kuriyama H et al (2005) Compensatory increase in fatty acid synthesis in adipose tissue of mice with conditional deficiency of SCAP in liver. Cell Metab 1:41–51

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Tian H, Lam KSL, Lin S, Hoo RCL, Konishi M et al (2013) Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 17:779–789

    Article  CAS  PubMed  Google Scholar 

  • Liu S et al (2013) A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use. Nature 502:550–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki M et al (2004) Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and independent mechanisms. J Biol Chem 279:25164–25171

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X, Ntambi JM (2007) Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab 6:484–496

    Article  CAS  PubMed  Google Scholar 

  • Moore JB (2009) Non-alcoholic fatty liver disease: the hepatic consequence of obesity and the metabolic syndrome. Proc Nutr Soc 69:211–220

    Article  Google Scholar 

  • Muoio DM, Newgard CB (2006) Obesity-related derangements in metabolic regulation. Annu Rev Biochem 75:367–401

    Article  CAS  PubMed  Google Scholar 

  • Nadler ST et al (2000) The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc Natl Acad Sci U S A 97:11371–11376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ntambi JM et al (2002) Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci U S A 99:11482–11486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi K, Shibata R, Murohara T, Ouchi N (2014) Role of anti-inflammatory adipokines in obesity-related diseases. Trends Endocrinol Metab 25:348–355

    Article  CAS  PubMed  Google Scholar 

  • Okada T et al (2005) Plasma palmitoleic acid content and obesity in children. Am J Clin Nutr 82:747–750

    CAS  PubMed  Google Scholar 

  • Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association scientific statement on obesity and heart disease from the obesity committee of the council on nutrition, physical activity, and metabolism. Circulation 113:898–918

    Article  PubMed  Google Scholar 

  • Stefan N, Haring H-U (2013) The role of hepatokines in metabolism. Nat Rev Endocrinol 9:144–152

    Article  CAS  PubMed  Google Scholar 

  • Strable MS, Ntambi JM (2010) Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol 45:199–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization. Obesity and Overweight. Fact sheet No. 311 (2015). Retrieved from: http://www.who.int/mediacentre/factsheets/fs311/en/

  • Yang Z-H, Miyahara H, Hatanaka A (2011) Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes. Lipids Health Dis 10:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (NIH) Grant R01 DK062388, ADA 7-13-BS-118, and USDA Hatch W2005 (to J.M.N.) and NIH Predoctoral Training grant T32-DK-007665 (to M.S.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maggie S. Burhans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burhans, M.S., Ntambi, J.M. (2016). Monounsaturated Fatty Acid Mediated Liver-Adipose Tissue Crosstalk and Metabolic Regulation. In: Ntambi, J. (eds) Hepatic De Novo Lipogenesis and Regulation of Metabolism. Springer, Cham. https://doi.org/10.1007/978-3-319-25065-6_12

Download citation

Publish with us

Policies and ethics