Skip to main content

Mathematical Algorithm for Calculation of the Moving Tsunami Wave Height

  • Conference paper
  • First Online:
  • 546 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 549))

Abstract

New numerical algorithm of determining the moving tsunami wave height for linear source at the characteristic surface \(t=\tau (x,y)\) is proposed where \(\tau (x,y)\) is a solution of Cauchy problem for eikonal equation. This algorithm based on and representation of fundamental solution of linear shallow water equations in the singular and regular parts. This approach allows one to reduce computational time. We get the expression of the moving tsunami wave height for the linear and arbitrary sources. Numerical results are discussed.

O. Krivorotko–This work is partially supported by the Ministry of Education and Science of the Russian Federation and the Republic of Kazakhstan N. 1746/GF4 “Theory and numerical methods for solving inverse and ill-posed problems of nature”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kabanikhin, S., Hasanov, A., Marinin, I., Krivorotko, O., Khidasheli, D.: A variational approach to reconstruction of an initial tsunami source perturbation. Appl. Numer. Math. 83, 22–37 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babich, V.M., Buldyrev, V.S., Molotkov, I.A.: Space-Time Ray Method: Linear and Nonlinear Waves (in Russian). Leningrad University Publisher, Leningrad (1985)

    Google Scholar 

  3. Dobrokhotov, S.Y., Nekrasov, R.V., Tirozzi, B.: Asymptotic solutions of the linear shallow-water equations with localized initial data. J. Eng. Math. 69, 225–242 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Maslov, V.P.: The Complex WKB Method for Nonlinear Equations I: Linear Theory. Birkhäuser Basel, Basel, Boston, Berlin (1994)

    Book  MATH  Google Scholar 

  5. Shokin, Y.I., Chubarov, L.B., Fedotova, Z.I., Gusyakov, V.K., Babailov, V.V., Beisel, S.A., Eletsky, S.V.: Mathematical modelling in application to regional tsunami warning systems operations. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 101, pp. 52–68 (2008)

    Google Scholar 

  6. Beisel, S.A., Chubarov, L.B., Didenkulova, I., Kit, E., Levin, A., Pelinovsky, E., Shokin, Y.I., Sladkevich, M.: The 1956 Greek Tsunami Recorded at Yafo (Israel) and Its Numerical Modeling. J. Geophys. Res. 114, C09002 (2009)

    Article  Google Scholar 

  7. Dutykh, D., Mitsotakis, D., Chubarov, L.B., Shokin, Y.I.: On the contribution of the horisontal sea-bed displacements into the tsunami generation process. Ocean Model. 56, 43–56 (2012)

    Article  Google Scholar 

  8. Kabanikhin, S.I.: Linear regularization of multidimensional inverse problems for hyperbolic equations (in Russian). Sobolev Institute of Mathematics. Preprint No. 27 (1988)

    Google Scholar 

  9. Romanov, V.G.: Inverse Problems of Mathematical Physics (in Russian). Nauka, Moscow (1984)

    MATH  Google Scholar 

  10. Romanov, V.G.: Stability in Inverse Problems (in Russian). Nauchniy Mir, Moscow (2005)

    Google Scholar 

  11. Kabanikhin, S.I., Krivorotko, O.I.: A numerical method for determining the amplitude of a wave edge in shallow water approximation. Appl. Comput. Math. 12, 91–96 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Voronina, T.A., Tcheverda, V.A.: Reconstruction of tsunami initial form via level oscillation. Bull. Novosib. Comput. Cent., Ser. Math. Model. Geophys. 4, 127–136 (1998)

    MATH  Google Scholar 

  13. Voronina, T.A.: Determination of spatial distribution of oscillation sources by remote measurements on a finite set of points. Siberian Journal of Numerical Mathematics 3, 203–211 (2004)

    MATH  Google Scholar 

  14. Voronina, T.A.: Reconstruction of initial tsunami waveforms by a truncated SVD method. J. Inverse Ill-Posed Probl. 19, 615–629 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Marchuk, A., Marinin, I., Komarov, V., Krivorotko, O., Karas, A., Khidasheli, D.: 3D GIS integrated natural and man-made hazards research and information system. In: Proceedings of The Joint International Conference on Human-Centered Computer Environments (HCCE) 2012, pp. 225–229. Aizu-Wakamatsu (2012)

    Google Scholar 

  16. Kabanikhin, S.I.: Inverse and Ill-Posed Problems: Theory and Applications. De Gruyter, Berlin (2011)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Krivorotko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kabanikhin, S., Krivorotko, O. (2015). Mathematical Algorithm for Calculation of the Moving Tsunami Wave Height. In: Danaev, N., Shokin, Y., Darkhan, AZ. (eds) Mathematical Modeling of Technological Processes. CITech 2015. Communications in Computer and Information Science, vol 549. Springer, Cham. https://doi.org/10.1007/978-3-319-25058-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25058-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25057-1

  • Online ISBN: 978-3-319-25058-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics