Skip to main content

New Model Search for Nonlinear Recursive Models, Regressions and Autoregressions

  • Conference paper
  • First Online:
Book cover Geometric Science of Information (GSI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9389))

Included in the following conference series:

Abstract

Scaled Bregman distances SBD have turned out to be useful tools for simultaneous estimation and goodness-of-fit-testing in parametric models of random data (streams, clouds). We show how SBD can additionally be used for model preselection (structure detection), i.e. for finding appropriate candidates of model (sub)classes in order to support a desired decision under uncertainty. For this, we exemplarily concentrate on the context of nonlinear recursive models with additional exogenous inputs; as special cases we include nonlinear regressions, linear autoregressive models (e.g. AR, ARIMA, SARIMA time series), and nonlinear autoregressive models with exogenous inputs (NARX). In particular, we outline a corresponding information-geometric 3D computer-graphical selection procedure. Some sample-size asymptotics is given as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Equipped with some \(\sigma \)-algebra \(\mathcal {A}\).

  2. 2.

    Equipped with some \(\sigma \)-algebra \(\mathcal {B}\).

  3. 3.

    Notice that, here, for the definition of AR models we do not assume the stationarity of \((X_m)_{m \ge k}\).

  4. 4.

    The use of the indefinite article reflects the possible non-uniqueness.

  5. 5.

    One can also take variants which (according to some principle) “synthetically un-zero-ize” the empirical probability mass of non-appearing outcomes.

  6. 6.

    In the sense of putting probability mass \({c \atopwithdelims ()j} \, \theta ^j \, (1-\theta )^{c-j}\)   (\(\theta \in ]0,1[\)) on the j-th point \(y_j\) of a finite set \(\mathcal {Y} =\{y_{1}, \ldots , y_{c}\}\).

  7. 7.

    Which may vary in \(\alpha \), \(\beta \).

  8. 8.

    Notice that is a discrete distribution and hence the reference distribution \(\lambda \) is typically the counting distribution (attributing the value 1 to each possible outcome); if \(Q_{\theta }\) has a different reference distribution \(\overline{\lambda }\) of completely different type (e.g. \(Q_{\theta }\) is a classical (absolutely) continuous distribution, say Gaussian, and accordingly \(\overline{\lambda }\) is the Lebesgue measure), then one can e.g. smooth the histogram and hence , or “discretize” \(Q_{\theta }\) by appropriately partitioning its support.

  9. 9.

    Choosing the counting distribution for \(\lambda \); one can use (15) also for non-probability contexts (e.g. general nonnegative vectors) with \(\sum _{{x\in \mathcal {X}}} p(x) \ne 1\), \(\sum _{{x\in \mathcal {X}}} q(x) \ne 1\).

  10. 10.

    In case of \(w(u,v)=w(v,u)\) for all (uv), one can easily produce symmetric preselection-score versions by means of either \(B_{\phi ,W }^{new}\left( P,Q\right) +B_{\phi ,W }^{new}\left( Q,P\right) \), \(\max \{B_{\phi ,W }^{new}\left( P,Q\right) , B_{\phi ,W }^{new}\left( Q,P\right) \}\), \(\min \{B_{\phi ,W }^{new}\left( P,Q\right) , B_{\phi ,W }^{new}\left( Q,P\right) \}\); this also works for \(\phi (t)= \phi _1(t)\) together with arbitrary scale-connectors w.

  11. 11.

    Goodness-of-approximation score surface.

  12. 12.

    Quantities which modelwise should be rare but actually appear much more often.

  13. 13.

    Quantities which modelwise should be very frequent but actually appear much less often.

References

  1. Ali, M.S., Silvey, D.: A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. B-28, 131140 (1966)

    Google Scholar 

  2. Basu, A., Harris, I.R., Hjort, N.L., Jones, M.C.: Robust and efficient estimation by minimising a density power divergence. Biometrika B-85, 549–559 (1998)

    Google Scholar 

  3. Basu, A., Shioya, H., Park, C.: Statistical Inference: The Minimum Distance Approach. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  4. Billings, S.A.: Nonlinear System Identification. Wiley, Chichester (2013)

    Book  MATH  Google Scholar 

  5. Csiszar, I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. A-8, 85–108 (1963)

    Google Scholar 

  6. Kißlinger, A.-L., Stummer, W.: Some decision procedures based on scaled bregman distance surfaces. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 479–486. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Kißlinger, A.-L., Stummer, W.: Robust statistical engineering by means of scaled Bregman divergences (to appear)

    Google Scholar 

  8. Kißlinger, A.-L., Stummer, W.: A new information-geometric method of change detection. Preprint

    Google Scholar 

  9. Liese, F., Vajda, I.: Convex Statistical Distances. Teubner, Leipzig (1987)

    MATH  Google Scholar 

  10. Nock, R., Piro, P., Nielsen, F., Ali, W.B.H., Barlaud, M.: Boosting k-NN for categorization of natural sciences. Int. J. Comput. Vis. 100, 294–314 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pardo, L.: Statistical Inference Based on Divergence Measures. Chapman & Hall, Boca Raton (2006)

    MATH  Google Scholar 

  12. Pardo, M.C., Vajda, I.: On asymptotic properties of information-theoretic divergences. IEEE Trans. Inf. Theor. 49(7), 1860–1868 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Read, T.R.C., Cressie, N.A.C.: Goodness-of-Fit Statistics for Discrete Multivariate Data. Springer, New York (1988)

    Book  MATH  Google Scholar 

  14. Stummer, W.: Some Bregman distances between financial diffusion processes. Proc. Appl. Math. Mech. 7(1), 1050503–1050504 (2007)

    Article  Google Scholar 

  15. Stummer, W., Vajda, I.: On Bregman distances and divergences of probability measures. IEEE Trans. Inf. Theor. 58(3), 1277–1288 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Stummer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kißlinger, AL., Stummer, W. (2015). New Model Search for Nonlinear Recursive Models, Regressions and Autoregressions. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2015. Lecture Notes in Computer Science(), vol 9389. Springer, Cham. https://doi.org/10.1007/978-3-319-25040-3_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25040-3_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25039-7

  • Online ISBN: 978-3-319-25040-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics