Advertisement

Some Geometric Consequences of the Schrödinger Problem

  • Christian LéonardEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9389)

Abstract

This note presents a short review of the Schrödinger problem and of the first steps that might lead to interesting consequences in terms of geometry. We stress the analogies between this entropy minimization problem and the renowned optimal transport problem, in search for a theory of lower bounded curvature for metric spaces, including discrete graphs.

Keywords

Schrödinger problem Entropic interpolations Optimal transport Displacement interpolations Lower bounded curvature of metric spaces Lott-Sturm-Villani theory 

References

  1. 1.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser, Basel (2008)zbMATHGoogle Scholar
  2. 2.
    Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comput. 37(2), A1111–A1138 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, Y., Georgiou, T., Pavon, M.: On the relation between optimal transport and schrödinger bridges: a stochastic control viewpoint. Preprint, arXiv:1412.4430
  4. 4.
    Chen, Y., Georgiou, T., Pavon, M.: Optimal transport over a linear dynamical system. Preprint, arXiv:1502.01265
  5. 5.
    Chung, K.L., Zambrini, J.-C.: Introduction to Random Time and Quantum Randomness. World Scientific, Hackensack (2008)zbMATHGoogle Scholar
  6. 6.
    Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. NIPS 2013, arXiv:1306.0895 (2013)
  7. 7.
    Föllmer, H.: Random fields and diffusion processes. In: Hennequin, P.-L. (ed.) École d’été de Probabilités de Saint-Flour XV-XVII-1985-87. Lecture Notes in Mathematics, vol. 1362, pp. 101–203. Springer, Berlin (1988)CrossRefGoogle Scholar
  8. 8.
    Gigli, N.: Nonsmooth differential geometry. An approach tailored for spaces with Ricci curvature bounded from below. Preprint. http://cvgmt.sns.it/paper/2468/
  9. 9.
    Léonard, C.: Lazy random walks and optimal transport on graphs. Preprint. arXiv:1308.0226, to appear in Ann. Probab
  10. 10.
    Léonard, C.: On the convexity of the entropy along entropic interpolations. Preprint, arXiv:1310.1274
  11. 11.
    Léonard, C.: From the Schrödinger problem to the Monge-Kantorovich problem. J. Funct. Anal. 262, 1879–1920 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Léonard, C.: A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst. A 34(4), 1533–1574 (2014)CrossRefzbMATHGoogle Scholar
  13. 13.
    McCann, R.: A convexity theory for interacting gases and equilibrium crystals. Ph.D. thesis, Princeton Univ. (1994)Google Scholar
  14. 14.
    Mikami, T.: Monge’s problem with a quadratic cost by the zero-noise limit of \(h\)-path processes. Probab. Theor. Relat. Fields 129, 245–260 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)zbMATHGoogle Scholar
  16. 16.
    Schrödinger, E.: Über die umkehrung der naturgesetze. Sitzungsberichte Preuss. Akad. Wiss. Berlin. Phys. Math. 144, 144–153 (1931)zbMATHGoogle Scholar
  17. 17.
    Schrödinger, E.: Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique. Ann. Inst. H. Poincaré 2, 269–310 (1932). http://archive.numdam.org/ARCHIVE/AIHP/ zbMATHGoogle Scholar
  18. 18.
    Sturm, K.-T., von Renesse, M.-K.: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm. Pure Appl. Math. 58(7), 923–940 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Villani, C.: Optimal Transport. Old and New. Grundlehren der mathematischen Wissenschaften, vol. 338. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Modal-XUniversité Paris OuestNanterreFrance

Personalised recommendations