The Nonlinear Bernstein-Schrödinger Equation in Economics

  • Alfred GalichonEmail author
  • Scott Duke Kominers
  • Simon Weber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9389)


In this paper we relate the Equilibrium Assignment Problem (EAP), which is underlying in several economics models, to a system of nonlinear equations that we call the “nonlinear Bernstein-Schrödinger system”, which is well-known in the linear case, but whose nonlinear extension does not seem to have been studied. We apply this connection to derive an existence result for the EAP, and an efficient computational method.


Assignment Problem Unobserved Heterogeneity Marriage Market Stable Marriage Transferable Utility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Becker, G.S.: A theory of marriage: part I. J. Polit. Econ. 81(4), 46–813 (1973)CrossRefGoogle Scholar
  2. 2.
    Carlier, G., Galichon, A.: A remark on the manifold of solutions of a nonlinear Schrödinger system. Working Paper (2014)Google Scholar
  3. 3.
    Choo, E., Siow, A.: Who marries whom and why. J. Polit. Econ. 114(1), 175–201 (2006)CrossRefGoogle Scholar
  4. 4.
    Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. Adv. Neural Inf. Process. Syst. 26, 2292–2300 (2013)Google Scholar
  5. 5.
    Deming, W.E., Stephan, F.F.: On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. 11(4), 427–444 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Monthly 69(1), 9–15 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Galichon, A., Salanié, B.: Cupid’s invisible hand: social surplus and identification in matching models. Working Paper (2014)Google Scholar
  8. 8.
    Galichon, A., Kominers, S.D., Weber, S.: An empirical framework for matching with imperfectly transferable utility. Working Paper (2014)Google Scholar
  9. 9.
    Gale, D., Nikaido, H.: The Jacobian matrix and global univalence of mappings. Mathematische Annalen 159(2), 81–93 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kruithof, J.: Telefoonverkeersrekening. De Ingenieur 52, E15–E25 (1937)Google Scholar
  11. 11.
    McKenzie, L.W.: Matrices with Dominant Diagonals and Economic Theory. Mathematical Methods in the Social Sciences 1959. Stanford University Press, Stanford (1960)zbMATHGoogle Scholar
  12. 12.
    Ruschendorf, L.: Convergence of the iterative proportional fitting procedure. Ann. Stat. 23(4), 1160–1174 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rüschendorf, L., Thomsen, W.: Closedness of sum spaces and the generalized Schrödinger problem. Theory Probab. Appl. 42(3), 483–494 (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    Shapley, L., Shubik, M.: The assignment game I: the core. Int. J. Game Theory 1, 111–130 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Schrödinger, E.: Über die Umkehrung der Naturgesetze. In: Akad. Wiss. Berlin. Phys. Math., vol. 144, pp. 144–153. Sitzungsberichte Preuss (1931)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alfred Galichon
    • 1
    Email author
  • Scott Duke Kominers
    • 2
  • Simon Weber
    • 3
  1. 1.Economics DepartmentSciences Po, Paris, France and New York UniversityNew YorkUSA
  2. 2.Society of FellowsHarvard UniversityCambridgeUSA
  3. 3.Department of EconomicsSciences PoParisFrance

Personalised recommendations